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Efficient Preprocessing in the Parallel
Block–Jacobi SVD Algorithm

Gabriel Okša∗ and Marián Vajteršic†

Abstract. One way, how to speed up the computation of the singular value decomposition of

a given matrix A ∈ Cm×n, m ≥ n, by the parallel two-sided block-Jacobi method, consists of ap-

plying some pre-processing steps that would concentrate the Frobenius norm near the diagonal.

Such a concentration should hopefully lead to fewer outer parallel iteration steps needed for the

convergence of the entire algorithm. It is shown experimentally, that the QR factorization with

the complete column pivoting, optionally followed by the LQ factorization of the R-factor, can

lead to a substantial decrease of the number of outer parallel iteration steps, whereby the details

depend on the condition number and on the distribution of singular values including their multi-

plicity. A subset of ill-conditioned matrices has been identified, for which the dynamic ordering

becomes inefficient. Best results in numerical experiments performed on the cluster of personal

computers were achieved for well-conditioned matrices with a multiple minimal singular value,

where the number of parallel iteration steps was reduced by two orders of magnitude. However,

the gain in speed, as measured by the total parallel execution time, depends decisively on the

implementation of the distributed QR and LQ factorizations on a given parallel architecture.

In general, the reduction of the total parallel execution time up to one order of magnitude has

been achieved.

1 Introduction

The two-sided serial Jacobi method is a numerically reliable algorithm for the computation of
the eigenvalue/singular value decomposition (EVD/SVD) of a general matrix A ∈ Cm×n, m ≥ n
[1]. For certain classes of matrices [6], it can achieve a high relative accuracy in computing
the tiniest singular values (or eigenvalues), which is of great importance in such applications
as quantum physics or chemistry.

Unfortunately, the Jacobi method – and especially its two-sided variant – belongs to the slowest
known algorithms for computing the EVD/SVD. Our experiments have shown that the dynamic

parallel ordering, which was proposed and implemented in [2], typically reduces the number of
outer parallel iteration steps in the two-sided block-Jacobi algorithm by 30 – 40 per cent for
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random, dense matrices of orders 103 – 104. In general, however, this is not enough to make the
method competitive with faster (albeit less accurate) algorithms based on the bi-diagonalization
(cf. [2, 3]).

One way, how to further decrease the number of outer parallel iteration steps, can be based on
applying an appropriate preconditioner to the original matrix A at the beginning of iteration
process. Ideally, such a preconditioner should concentrate the Frobenius norm of A towards
diagonal as much as possible. Notice that if A were a block-diagonal matrix, and if its partition
covered all diagonal blocks, only one outer parallel iteration step would be required for the whole
SVD. Hence, it is hoped that the concentration of the Frobenius norm towards the diagonal
might substantially decrease the number of outer iteration steps.

The connection between diagonal elements of R- or L-factor of a general matrix A and its
singular values (SVs) was studied by Stewart in [11]. He has shown experimentally that after the
QR factorization with column pivoting (QRFCP), followed optionally by the LQ factorization
(LQF) of the R-factor with or without column pivoting, the absolute values of diagonal elements
in resulting upper or lower triangular matrix (so called R-values or L-values) are, in general,
very good approximations of SVs of A. Since the sum of squares of SVs is equal to the square of
the Frobenius norm of A, this also means that the Frobenius norm is concentrated on or near its
diagonal. Moreover, R-values (or L-values) also reveal possible absolute gaps in the distribution
of SVs and provide a substantial information needed in solving rank-revealing (cf. [5, 10]) or
(total) least squares problems (cf. [4, 8, 12]).

For the serial Jacobi method, the idea of the pre-processing of matrix A (prior to its SVD)
by the QRFCP, optionally followed by the LQF of R-factor, was tested by Drmač and Veselić
in [7]. Together with some other techniques (e.g., by sophisticated monitoring of the size of
off-diagonal elements for deciding when not to apply the Jacobi rotations), they were able to
speed up the one-sided serial Jacobi EVD/SVD algorithm significantly.

We extend the idea of a serial preconditioner to the parallel case. We show that its combination
with dynamic ordering can lead to a substantial decrease of the number of parallel iteration
steps, at least for certain matrices. The best results were achieved for well-conditioned matrices
with a multiple minimal SV, where the reduction can be as large as two orders of magnitude.
However, due to an inefficient implementation of the QRFCP (LQF) in the current ScaLAPACK
library, the reduction of the total parallel execution time is about one order of magnitude (which
is certainly still quite promising).

The report is organized as follows. In Section 2 we briefly introduce the parallel two-sided block-
Jacobi SVD algorithm with the dynamic ordering. Section 3 is devoted to the variants of pre-
and post-processing based on the QRF with CP, optionally followed by the LQF of R-factor.
Experimental results on a cluster of personal computers (PCs) are described in Section 4. Here
we also discuss the efficiency of dynamic ordering with respect to the reduction of the number of
outer parallel iteration steps needed for the convergence. We show experimentally and explain
theoretically (at least to some degree), when the dynamic ordering can become inefficient.
Finally, Section 5 summarizes achieved results and proposes lines for further research.

Throughout the report, ‖A‖F denotes the Frobenius norm of a matrix A, a:j is the jth column
of A, ‖a:j‖ is its Euclidean norm, and κ is the condition number of A defined as the ratio of
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its largest and smallest SV. By Ai1:i2, j1:j2 we denote the sub-matrix of A consisting of rows
i1, . . . , i2, and columns j1, . . . , j2.

2 Parallel algorithm with dynamic ordering

We mention only briefly basic constituents of the parallel two-sided block-Jacobi SVD algo-
rithm (PTBJA) with dynamic ordering; details can be found in [2]. The parallel algorithm for
processor me, me = 0, 1, . . . , p − 1, can be written in the form of Algorithm 1.

Algorithm 1 Parallel block-Jacobi SVD algorithm with dynamic ordering

1: U = Im

2: V = In

3: (i, j) = (2 me, 2 me + 1)
4: while F (A, `) ≥ ε do
5: update(W )
6: ReOrderingComp(i, j, W, me) → dest1 , dest2 , tag1 , tag2
7: copy(Ai, Ui, Vi, i) → Ar, Ur, Vr, r
8: copy(Aj, Uj, Vj, j) → As, Us, Vs, s
9: send(Ar, Ur, Vr, r, dest1 , tag1 )

10: send(As, Us, Vs, s, dest2 , tag2 )
11: receive(Ai, Ui, Vi, i, 1)
12: receive(Aj , Uj, Vj, j, 2)
13: if F (Sij, `) ≥ δ then
14: . computation of Xij and Yij by SVD of Sij

15: SVD(Sij) → Xij, Yij

16: . update of block columns

17: (Ai, Aj) = (Ai, Aj) · Yij

18: (Ui, Uj) = (Ui, Uj) · Xij

19: (Vi, Vj) = (Vi, Vj) · Yij

20: else
21: Xij = I(m/p)

22: end if
23: AllGather(Xij , i, j) → XX(t) = (Xrs, r, s), t = 0, 1, . . . , p − 1
24: . update of block rows

25: for t = 0 to p − 1 do

26:

(

Ari Arj

Asi Asj

)

= XH
rs,t ·

(

Ari Arj

Asi Asj

)

27: end for
28: end while

end
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When using p processors and the blocking factor ` = 2p, a given matrix A is cut column-wise
and row-wise into an `× ` block structure. Each processor contains exactly two block columns
of dimensions m×n/` so that `/2 SVD subproblems of block size 2× 2 are solved in parallel in
each iteration step. This tight connection between the number of processors p and the blocking
factor ` can be released (see [3]). However, our experiments have shown that using ` = 2p
ensures the least total parallel execution time in most cases.

The procedure ReOrderingComp (Algorithm 1, step 6) computes the optimal reordering desti-
nations of all block columns residing in a given processor (dest1 and dest2) and their locations
at new position (tag1 and tag2). The so-called dynamic reordering is based on the maximum-
weight perfect matching that operates on the ` × ` updated weight matrix W using the elements
of W + W T , where (W + W T )ij = ‖Aij‖

2
F + ‖Aji‖

2
F. Details concerning the dynamic ordering

can be found in [2]. The argument tag provides the matching between the corresponding send

and receive calls.

The kernel operation is the SVD of 2 × 2 block subproblems

Sij =

(

Aii Aij

Aji Ajj

)

, (1)

where, for a given pair (i, j), i, j = 0, 1, . . . , `− 1, i 6= j, the unitary matrices Xij and Yij are
generated such that the product

XH
ij Sij Yij = Dij

is a block diagonal matrix of the form

Dij =

(

D̂ii 0

0 D̂jj

)

,

where D̂ii and D̂jj are diagonal.

The termination criterion of the entire process is

F (A, `) =

√

√

√

√

`−1
∑

i,j=0, i6=j

‖Aij‖
2
F < ε , ε ≡ prec · ‖A‖F , (2)

where ε is the required accuracy (measured relatively to the Frobenius norm of the original
matrix A), and prec is a chosen small constant, 0 < prec � 1.

The subproblem (1) is solved only if

F (Sij, `) =
√

‖Aij‖
2
F + ‖Aji‖

2
F ≥ δ , δ ≡ ε ·

√

2

` (` − 1)
, (3)

where δ is a given subproblem accuracy. It is easy to show that if F (Sij, `) < δ for all i 6= j
then F (A, `) < ε, i.e., the entire algorithm has converged.

After the embedded SVD is computed, the matrices Xij and Yij of local left and right singular
vectors, respectively, are used for the local update of block columns. Then each processor sends
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its matrix Xij to all other processors, so that each processor maintains an array of p matrices.
These matrices are needed in the orthogonal updates of block rows.

From the implementation point of view, the embedded SVD is computed using the procedure
ZGESVD from the LAPACK library while matrix multiplications are performed by the procedure
ZGEMM from the BLAS (Basic Linear Algebra Subroutines). The point-to-point as well as
collective communications are realized by the Message Passing Interface (MPI).

3 Variants of pre-processing and post-processing

3.1 QR factorization with column pivoting

As mentioned above, the main idea of pre-processing is to concentrate the Frobenius norm of
the whole matrix A towards its diagonal. For this purpose, the QRFCP is applied to A at the
beginning of computation. This pre-processing step can be written in the form

AP = Q1R, (4)

where P ∈ Rn×n is the permutation matrix, Q1 ∈ Cm×n has unitary columns and R ∈ Cn×n is
upper triangular. Notice that this is a so-called economy-sized QRFCP, where only n unitary
columns of orthogonal matrix are computed.

In the second step, the SVD of the matrix R is computed by the PTBJA with dynamic ordering.
Since R is upper triangular, one could use here some parallel variant of the Kogbetliantz method
(cf. [9]), which preserves the upper triangular form through the whole Jacobi process. However,
at this stage, our PTBJA does not include this option, and the upper triangular form of R is
lost, in general, after first update of block rows and block columns. Let us denote the SVD of
R by

R = U1ΣV H
1 , (5)

where U1 ∈ C
n×n and V1 ∈ C

n×n are left and right singular vectors, respectively, and the
diagonal matrix Σ ∈ Rn×n contains n SVs, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, that are the same as those
of A.

In the final step, some post-processing is required to obtain the SVD of A, A ≡ UΣV H . Using
Eq. (5) in Eq. (4), one obtains

AP = (Q1U1)ΣV H
1 ,

so that
U = Q1U1 and V = PV1. (6)

As can be seen from Eq. (6), the post-processing step consists essentially of one distributed
matrix multiplication. Here we assume that the permutation of rows of V1 can be done without
a distributed matrix multiplication, e.g., by gathering V1 in one processor and exchanging its
rows.
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3.2 Optional LQ factorization of the R-factor

The second variant of pre- and post-processing starts with the same first step as above, i.e.,
with the QRFCP of A.

However, in the second step, the LQF of R-factor is computed (without column pivoting), i.e.,

R = LQ2, (7)

where L ∈ Cn×n is the lower triangular matrix and Q2 ∈ Cn×n is the unitary matrix. This step
helps to concentrate the Frobenius norm of R towards the diagonal even more (cf. [7, 11]).

Next, the SVD of L is computed in the third step by our parallel PTBJA with dynamic ordering,

L = U2ΣV H
2 , (8)

and, finally, the SVD of the original matrix A ≡ UΣV H is assembled in the post-processing
step, where

U = Q1U2 and V = P (QH
2 V2). (9)

Hence, the post-processing consists essentially of two distributed matrix multiplications.

To illustrate the effect of pre-processing, Figure 1 depicts the relative block distribution of ‖A‖2
F

for a random dense matrix A before and after both pre-processing steps. The QRFCP together
with the LQF are clearly able to concentrate more that 99 per cent of ‖A‖2

F into diagonal
blocks.

Clearly, the time and space complexity of the second pre-processing variant is higher than of the
first one. In general, one can expect some trade-off between the parallel Jacobi algorithm applied
to the original matrix A and to the R (L) factor after one (two) distributed factorization(s).
If the reduction of the number of outer iteration steps were not large enough, and if the
computation of one (two) factorization(s) were not very efficient on a given parallel architecture,
it could easily happen that the total parallel execution time needed for the SVD of A would
be higher for variants with pre- and post-processing than for the Jacobi algorithm applied
directly to A. To test the behavior of both distributed factorizations, we have conducted some
numerical experiments that are described next.

4 Implementation and experimental results

We have implemented three variants of the parallel two-sided block-Jacobi SVD algorithm on
the cluster of PCs named ‘Gaisberg’ at the University of Salzburg. The first variant, denoted
by [SVD], simply applies the PTBJA to an original matrix A without any pre-processing. The
second method, denoted by [QRCP, SVD(R)], first computes the QRF with CP of A and then
applies the PTBJA to the R-factor. The computation ends by the post-processing according to
Eq. (6). Finally, the third variant, denoted by [QRCP, LQ, SVD(L)], computes the QRF with
CP of A, then the LQF (without CP) of the R-factor, and applies the PTBJA to the L-factor
that comes out from the second factorization. To get the SVD of an original matrix A, the
post-processing step according to Eq. (9) is required.
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Figure 1: Left, relative block distribution (in per cent) of ‖A‖2
F. Right, the same distribution

w.r.t. the individual block sub-diagonals of L-factor after the QRFCP + LQF. The main block
diagonal contains 99.6 per cent of ‖A‖2

F (not shown). Random matrix A with n = 600, ` =
20, κ = 10, and with a multiple minimal SV.

The cluster of PCs consisted of 25 nodes arranged in a 5×5 two-dimensional torus. Nodes were
connected by the Scalable Coherent Interface (SCI) network; its bandwidth was 385 MB/s and
latency < 4µs. Each node contained 2 GB RAM with two 2.1 GHz ATHLON 2800+ CPUs,
while each CPU contained a two-level cache organized into a 64 kB L1 instruction cache, 64
kB L1 data cache and 512 kB L2 data cache.

All computations were performed using the IEEE standard double precision floating point
arithmetic with the machine precision εM ≈ 1.11×10−16. By default, the constant prec = 10−13

was used for the computation of ε and δ (see Eqs. (2) and (3)). The number of processors p was
variable, p = 4, 8, 24, 40, and depended on the order n of a square real test matrix A, whereby
the values n = 2000, 4000, 6000 and 8000 have been used.

Matrix elements in all cases were generated randomly, with a prescribed condition number κ and
a known distribution of SVs 1 = σ1 ≥ σ2 ≥ · · · ≥ σn = 1/κ. More precisely, A = Y DZT , where
Y and Z were random orthogonal matrices with their elements from the Gaussian distribution
N(0, 1), and D was a diagonal matrix with a prescribed distribution of SVs on its main diagonal.

With respect to κ, there were well-conditioned matrices with κ = 10 and ill-conditioned matrices
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with κ = 108. In all cases, the SVs were contained in the closed interval [κ−1, 1], and two types
of their distribution were used. In the first distribution, a matrix had a multiple minimal SV
with σ1 = 1 and σ2 = σ3 = · · · = σn = κ−1. In the second case, the SVs were distributed in
the form of a geometric sequence with σ1 = 1 and σn = κ−1 (i.e., all SVs were distinct, but
clustered towards σn). It is well known that the SVD of matrices with multiple or clustered
SVs, especially in an ill-conditioned case, is harder to compute as compared to the case of
well-separated SVs.

Numerical computations were performed using standard numerical libraries, either from local
(LAPACK) or distributed (ScaLAPACK) software packages. In particular, the QRFCP and
the LQF was implemented by the ScalAPACK’s routine PDGEQPF and PDGELQF, respectively.
Point-to-point and collective communication between processors was performed using the com-
munication libraries BLACS (Basic Linear Algebra Communication Subroutines) and MPI.

Experimental results are presented in subsequent tables, the format of which is common for all
of them. The first column contains the order of a (square) matrix while the second one denotes
the number of processors used in an experiment. Afterwards, the results for individual methods
are depicted in the format of two sub-columns per method. The first sub-column contains the
number of parallel iteration steps niter needed for the convergence at given accuracy, and the
second sub-column contains the total parallel execution time Tp. Best values of Tp for each
matrix order n are depicted in bold.

4.1 Multiple minimal singular value

We begin with results for well-conditioned matrices with a multiple minimal SV, which are
summarized in Table 1. Its last two columns contain ratios of niter and Tp for two methods

Table 1: Performance for ` = 2p, prec = 10−13, κ = 10, multiple minimal SV

[SVD] [QRCP, SVD(R)]
n p niter Tp[s] niter Tp[s] [Ratio niter] [Ratio Tp]

2000 4 170 1778.5 3 91.0 56.7 19.5
4000 8 452 6492.5 4 307.7 113.0 21.1
6000 24 1817 5367.6 6 369.3 302.8 14.5
8000 40 3289 7709.9 7 1273.2 469.0 6.1

studied – namely, [SVD] and [QRCP, SVD(R)]. The reduction of niter using the QRF with CP
is enormous (two orders of magnitude), and the value of niter for the [QRCP, SVD(R)] method
increases only slowly with an increasing n. Thus, considering the reduction of niter alone, the
QRF with CP plays the role of an almost ideal preconditioner in this case. It is also clear
that employing the additional LQF of R-factor is not necessary because the QRF with CP has
already reduced niter substantially.

An interesting observation is that of decrease of Tp when going from n = 4000 to n = 6000
while niter increases. This can be explained as follows. For n = 4000 and p = 8, the size of
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Figure 2: Portion of Tp needed in the pre-processing, post-processing and collective communi-
cation using the [QRCP, SVD(R)] for κ = 10 and the multiple minimal SV.

a 2 × 2 block SVD subproblem solved in each processor is 500 × 500, whereas for n = 6000
and p = 24 it is 250 × 250. Since the time complexity of the SVD is O(n3), halving the
dimension results in eight-fold speedup of the SVD computation in each parallel iteration step.
However, since the blocking factor ` increases from ` = 16 to ` = 48, the number of parallel
iteration steps also increases (cf. [2, 3]); in our case approximately four times, from niter = 452
to niter = 1817. Hence, the total time spent in the SVD of sub-problems is approximately
halved. This leads, together with the increasing cost of pre- and post-processing (see Figure 2
below) and of collective as well as point-to-point communication, to the observed reduction of
Tp. We note that similar reduction of Tp by transition from n = 4000 to n = 6000 has been
observed also for other condition numbers and/or distributions of SVs in tables below.

In contrast to niter, savings in Tp are of one order of magnitude less. The reason of this behavior
can be deduced from Figure 2. For all matrix orders, the pre-processing step (the QRF with
CP) takes more than 30 per cent of Tp, for matrix orders up to 6000 even more than 50 per cent.
This means that the QRF with CP, as currently implemented in the ScaLAPACK library, is not
very efficient (at least for our cluster of PCs). In other words, the substantial decrease of niter

is not sufficient for a comparable decrease of Tp when another portion of parallel computation
is not implemented efficiently.

The portion of Tp spent in collective communication includes the gathering of matrices U, Σ
and V on one processor after finishing the computation. For n = 8000 and the number of
processors p = 40 this gathering alone suddenly jumps in time complexity, so that the whole
collective communication takes more than 50 per cent of Tp. It is possible that the operating
system takes another algorithm for gathering columns of double precision floats of length 8000
than for smaller vectors. On the other hand, the distributed matrix multiplication needed in
the post-processing step is implemented quite efficiently. Its time complexity actually decreases
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with the matrix order, and only about 7 per cent of Tp is needed for its completion for n = 8000.
Similar results regarding the profiling of pre- and post-processing steps were observed also in
other experiments.

Results for ill-conditioned matrices with a multiple minimal SV are depicted in Table 2. When

Table 2: Performance for ` = 2p, prec = 10−13, κ = 108, multiple minimal SV

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 59 832.9 11 163.5 7 153.1
4000 8 191 3308.8 26 547.9 15 609.8
6000 24 819 2791.8 72 632.6 47 842.9
8000 40 1512 5169.6 125 1811.0 79 1782.5

compared with well-conditioned matrices (see Table 1), one can conclude that for the [QRCP,
SVD(R)] method the number of parallel iteration steps niter depends much more strongly on n.
The additional LQF of the R-factor helps to decrease further the number of parallel iteration
steps, but savings in the total parallel execution time are not proportional due to the large time
complexity of two distributed factorizations during pre-processing.

4.2 Geometric sequence of singular values

In the following experiments, the SVs were distributed in the form of a geometric sequence in
the interval [κ−1, 1] with σ1 = 1 and σn = κ−1, i.e., they were distinct but clustered towards
σn.

Results for well-conditioned matrices are depicted in Table 3. As can be seen, neither the

Table 3: Performance for ` = 2p, prec = 10−13, κ = 10, geometric sequence of SVs

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 41 665.5 39 699.3 36 758.1
4000 8 102 2486.6 93 2594.4 84 2580.8
6000 24 356 1570.0 323 1866.2 283 1828.5
8000 40 621 2785.2 565 2827.4 492 2566.9

[QRCP, SVD(R)] method nor the [QRCP, LQ, SVD(L)] one can reduce substantially the total
parallel execution time Tp, since niter is reduced by at most 10 – 20 per cent, which is not
enough.

Table 4 depicts the experimental results for ill-conditioned matrices. Using the [QRCP, SVD(R)]
method in this case leads to the reduction of niter by only 5 – 30 per cent, which is not enough
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Table 4: Performance for ` = 2p, prec = 10−13, κ = 108, geometric sequence of SVs

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 44 520.6 43 565.9 19 315.0
4000 8 137 2132.9 114 2042.7 45 1067.2
6000 24 559 1883.4 527 2136.7 154 1186.7
8000 40 1025 3583.9 969 3929.3 260 2034.4

to reduce the total parallel execution time Tp. In fact, for n = 6000 and n = 8000, the total
parallel execution time is even higher than for the SVD of A alone. Therefore, the application
of the [QRCP, LQ, SVD(L)] method is required to decrease niter further. Consequently, Tp is
decreased albeit the savings, as compared to the direct SVD of A, are only around 40 – 50 per
cent.

When comparing the results in Tables 3 and 4, it turns out that the [QRCP, LQ, SVD(L)]
method is far more successful in reducing niter and Tp for ill-conditioned matrices than for well-
conditioned ones. Since in both cases the SVs decrease gradually from 1 to κ−1 (i.e., there are
no large absolute gaps in the distribution of SVs), there exists no significant layered structure in
the L-factor in any of these two cases (with respect to the layered structure of the R- or L-factor,
see the discussion in subsection 4.3 below). Hence, the main reason for the faster convergence
in the case of ill-conditioned matrices seems to be the more concentrated Frobenius norm near
the diagonal of L at the beginning of iterations. This somewhat surprising fact is explained in
next subsection.

4.3 Structure of R-factor (L-factor) and its impact on convergence

rate

There are two deciding parameters that influence the convergence rate of the PTBJA after
applying the QRFCP, optionally followed by the LQF of R-factor. The first parameter is a
degree of concentration of the overall Frobenius norm of A towards the diagonal of R (L), while
the second one is the distribution of the remaining off-diagonal Frobenius norm in R (L). To
simplify discussion, the case of R-factor is treated in detail, and some remarks with respect to
the L-factor are added when appropriate.

Let us consider first a concentration of the Frobenius norm towards the diagonal of R. Recall
that the QRFCP is computed by applying the unitary Householder transformations to the
columns of A from left to right that do not change the Frobenius norm of any column. Since
‖A‖2

F = ‖R‖2
F =

∑n
j=1 σ2

j , the degree of concentration depends on how close the absolute values
of diagonal elements of R approximate the SVs. As shown in [11], the R-values underestimate

and overestimate the largest and smallest SVs, respectively.

For a well-conditioned matrix A, all its SVs contribute to ‖A‖2
F significantly. In contrast, taking

an ill-conditioned matrix A, it can happen that only σ1 together with few largest SVs play an
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important role in computing ‖A‖2
F. Consequently, underestimating σ1 (or few largest SVs) by

top R-values means that the Frobenius norm of A can be concentrated on diagonal of R to a
lesser degree for the ill-conditioned matrices than for the well-conditioned ones. Thus, one can
expect a greater number of parallel iteration steps in the former case than in the latter.

However, the situation may change when going from the R- to L-factor, because |l11| usually
approximates σ1 much more exactly than |r11| (and this is also true for few other SVs next
to σ1 – cf. [11]). Thus it follows that after the LQF of R-factor the Frobenius norm of A can
be concentrated on the diagonal of L to a greater degree for the ill-conditioned matrices than
for the well-conditioned ones. This helps to explain the experimental results for geometrically
distributed SVs, where the application of the [QRCP, LQ, SVD(L)] method was more successful
for ill-conditioned matrices (compare Tables 3 and 4).

Second important parameter for the rate of convergence of the PTBJA is a distribution of the
remaining off-diagonal Frobenius norm in R-factor. As is well known, after performing the QRF
with column pivoting on matrix A, each diagonal element rii, 1 ≤ i ≤ n, of resulting R-factor
satisfies the set of inequalities

|rii|
2 ≥

j
∑

k=i

|rkj|
2, j = i + 1, i + 2, . . . , n.

Now assume that the R-values approximate the SVs of A reasonably well, and that there is a
large absolute gap in the distribution of SVs – i.e., there exists an index i1 such that

σ1 ≥ . . . ≥ σi1 � σi1+1 ≥ σi1+2 ≥ . . . ≥ σn.

Since the values |rii| are ordered non-increasingly, |ri1, i1| � |ri1+1, i1+1|, and

‖R‖2
F =

n
∑

j=1

‖r:j‖
2 =

n
∑

j=1

σ2
j ≥ σ2

i1
� σ2

i1+1 ≈ |ri1+1, i1+1|
2.

Consequently, the bottom sub-matrix Ri1+1:n, i1+1:n can contain only ‘small’ elements (i.e., those
in absolute value smaller or equal to |ri1+1, i1+1|), while the top sub-matrix R1:i1, 1:n must contain
‘large’ elements in almost all sub-columns (in order to preserve ‖R‖F = ‖A‖F). Here the ratio
‘large/small’ can be estimated by |ri1, i1|/|ri1+1, i1+1| ≈ σi1/σi1+1.

Thus the R-factor can be partitioned row-wise in two non-balanced parts. When imposing any
block structure on R using the blocking factor ` of the block-Jacobi method, it follows that
any off-diagonal block from the upper part will have much larger Frobenius norm than any
off-diagonal block from the lower part.

Notice that the above considerations can be easily extended (by induction from the bottom of
R to the top) to any number of large gaps in the distribution of SVs.

This layered block-row distribution of the off-diagonal Frobenius norm of R-factor causes the
loss of efficiency in the dynamic ordering. Consider results from Table 2 for ill-conditioned

matrices with a multiple minimal SV. Since σ1 = 1 and σi = 10−8 for all i, 2 < i ≤ n, we
have i1 = 1, and the off-diagonal Frobenius norm of R will be concentrated in its first block
row regardless to n and `. This situation is depicted in Figure 3. The complete graph with
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Figure 3: Structure of the complete edge-weighted graph when the dynamic ordering is ineffi-
cient. Major part of the off-diagonal Frobenius norm of R is concentrated in the first block-row,
so that all edges incident with the vertex V1 are ‘heavy’ (thick lines), other are ‘light’ (thin
lines). Since a perfect matching (dashed lines) contains exactly one edge incident with each
vertex, the decrease of the off-diagonal Frobenius norm in this parallel iteration step is very
small relatively to its overall actual value.

six vertices corresponds to the 6 × 6 block partition of R. Its edge [Vi, Vj] is weighted by
‖Rij‖

2
F + ‖Rji‖

2
F. All edges incident with the vertex V1 are ‘heavy’ (i.e., their weights are

large), while other edges are ‘light’ (i.e., their weights are small). Since the maximum-weight
perfect matching can only use exactly one edge incident with V1, the reduction of the off-
diagonal Frobenius norm will be relatively small, and a greater number of iteration steps may
be required for the convergence of the whole algorithm.

However, ill-conditioning alone is not sufficient for a layered structure of R to occur. Consider
an ill-conditioned matrix A (say, κ = 108,) with a multiple maximal SV, i.e., σi = 1 for all
i, 1 ≤ i ≤ n − 1, and σn = 10−8. In this case, σn alone is of no significant influence, and
all off-diagonal blocks will have more or less the same Frobenius norm. This is advantageous
from the point of view of dynamic ordering, because the maximum-weight perfect matching
can substantially reduce the off-diagonal Frobenius norm in one iteration step. Hence, even
for ill-conditioned matrices, the off-diagonal Frobenius norm of R-factor can be distributed
uniformly and the PTBJA may converge in a relatively smaller number of parallel iteration
steps. This conclusion has been confirmed by additional numerical experiments, where the
results for ill-conditioned matrices with a multiple maximal SV were almost identical to those
presented in Table 1 for well-conditioned matrices with a multiple minimal SV. In particular,
niter was of order O(1) over the whole range of n.

In the case of well-conditioned matrices, a relatively small value of κ precludes the existence
of large gap(s) in the distribution of SVs, so that the off-diagonal Frobenius norm of R-factor
is distributed more or less evenly. This helps to explain excellent convergence properties of
the PTBJA after pre-processing for well-conditioned matrices with a multiple minimal SV (see
results in Table 1).

After an optional LQF of R, the resulting L-factor is usually much closer to a diagonal matrix
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than R (cf. [7, 11]). Despite a high concentration of the Frobenius norm towards the diagonal of
L, the layered block structure may still be present, so that a faster convergence of the PTBJA
is hindered. This effect is clearly observed for ill-conditioned matrices with a multiple minimal
SV (see Table 2). Here niter did not decrease significantly after applying the LQF of R-factor,
although, at the beginning of iterations, the diagonal of L contained about 99 per cent of ‖A‖2

F.

5 Conclusions

The traditional usage of the QRF before the EVD/SVD computation emphasizes the reduction
of dimension of an original matrix A whenever m � n. Even more importantly, the QRF with
column pivoting, optionally followed by the LQF of R-factor, concentrates the Frobenius norm
towards a diagonal, and reveals the form of the distribution of SVs. While the former fact can
be very advantageous from the point of dynamic ordering used in the parallel two-sided block-
Jacobi SVD algorithm, a layered block-row (block-column) structure of the R-factor (L-factor)
can hinder the efficiency of dynamic ordering. This is the case for ill-conditioned matrices
with large absolute gap(s) between SVs and with a special distribution of SVs (including their
multiplicity), when a vast majority of the off-diagonal Frobenius norm is concentrated in one
or few block-rows of R (block-columns of L).

Our experiments have shown that the largest savings, both in niter and Tp, as compared to
the simple block-Jacobi SVD, can be observed for well-conditioned matrices with a multiple
minimal SV. In this case, the QRF with CP and the subsequent SVD of R-factor is the method
of choice. For ill-conditioned matrices with a geometric distribution of SVs, the additional pre-
processing step (the LQF of R-factor) is required to substantially reduce niter. Consequently,
Tp is also reduced, but only mildly.

Further savings, both in memory and Tp, can be achieved by exploiting the Kogbetliantz-like
strategy when computing the SVD of R-factor (L-factor). Recall that the Kogbetliantz algo-
rithm preserves the upper (lower) triangular form of R (L) during the whole Jacobi process,
so that the memory required for storing them is halved as compared to our current imple-
mentation. To decrease Tp, one can think of time spent in orthogonal updates of block rows
and block columns, whereby only exactly one block row (block column) is of length n and
all other are shorter. Using the currently implemented block column-wise data distribution
of R (L), the orthogonal updates of block columns would remain local to processors (albeit
non-balanced due to the variable lengths of block columns). However, the communication com-
plexity in the orthogonal updates of block rows can be decreased, since not all processors store
the corresponding parts of all block rows anymore. It is an interesting question if there exists
another data distribution of the R-factor (L-factor) for a parallel, balanced implementation of
the Kogbetliantz algorithm on a block level.

The current main bottleneck of the proposed preconditioning is the high time complexity of the
distributed QRF with CP, and of the distributed LQF, as implemented in the current version
of ScaLAPACK. This is plainly seen in the case of well-conditioned matrices with geometrically
distributed SVs, where the reduction of niter is not sufficient for decreasing Tp. It is an open
and interesting question whether this state of affairs can be improved. We also plan to extend
numerical experiments to larger matrices of order 105–106.
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