
A Java Framework for Giotto

Markus Amersdorfer Helge Hagenauer Werner Pohlmann

Technical Report 2005-01 April 2005

Department of Scientific Computing

Computing

cientificS
Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.scicomp.sbg.ac.at

Technical Report Series



A Java Framework for Giotto

Markus Amersdorfer
FB Scientific Computing

Universität Salzburg
Jakob-Haringer-Straße 2
A-5020 Salzburg, Austria

mamers@cosy.sbg.ac.at

Helge Hagenauer
FB Scientific Computing

Universität Salzburg
Jakob-Haringer-Straße 2
A-5020 Salzburg, Austria

hagenau@cosy.sbg.ac.at

Werner Pohlmann
FB Scientific Computing

Universität Salzburg
Jakob-Haringer-Straße 2
A-5020 Salzburg, Austria

pohlmann@cosy.sbg.ac.at

ABSTRACT
Real-time programming in Java (RTSJ) relies on threads
for concurrency, which are difficult to use and generally suf-
fer from nondeterministic execution. We propose to define
and implement frameworks that offer programming models
which are simpler in use though possibly more restricted
in scope. As an example, we describe a framework that
supports the Giotto programming model in Java. Giotto
([13]) is a new language for embedded software; it is time-
triggered, with temporally fixed communication events and
computations occurring in between.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and embedded systems

Keywords
Embedded systems, real-time systems, time triggered sys-
tems

1. INTRODUCTION
Some years ago, using Java with its object-oriented features,
automatic garbage collection etc. for real-time programming
may have seemed a strange idea, but with the Real Time
Specification for Java (RTSJ, [3]), things and attitudes have
changed. RTSJ is now seen as a serious and in some re-
spects superior rival to Ada ([4],[20]). This comparison is
well founded: both languages rely on threads (or tasks) for
concurrency.

Concurrency is characteristic of real-time software, which
has to deal with several things at once. And threads, to-
gether with coordination techniques like monitors, are an
old and extensively studied concept that seems a natural
extension of imperative programming. On the other hand,
threads are notorious for hard-to-understand programs and
hard-to-find bugs which sometimes come up only after years
of happy use. The basic semantic idea – threaded software

gives an arbitrary interleaving of the respective sequences
of actions – exhibits the risk of race conditions and nonde-
terminacy of results, and the necessary attempt to estab-
lish some order via synchronisation brings up dangers like
deadlock. Real-time applications add to this the problem
of temporal nondeterminacy (deadline over-runs, jitter) and
use scheduling to ensure some measure of timeliness.

Indeed: In thread-based real-time programming, techniques
are even more diverse and harder to assess than in other
areas of concurrent programming. For a simple example,
consider two periodic threads A and B with a common pe-
riod and the additional requirement that (an instance of) B
shall run only after (the corresponding instance of) A has
finished so that B may use A’s results. There is a bewilder-
ing range of possibilities (examples e) and f) are from [6]),
neither of which is completely satisfactory:

a) concatenate A and B to obtain a single thread;

b) use static cyclic scheduling;

c) use wait-notify synchronisation;

d) turn B into an event handler whose execution is trig-
gered on A’s completion;

e) release B with an offset t relative to A where t is large
enough to accomodate A and small enough so that B
fits into the remainder of the period;

f) assuming fixed-priority scheduling, and that A is non-
blocking, give A higher priority than B;

g) assuming fixed-priority scheduling with FIFO-within-
priorities, and that A is nonblocking, give A and B
equal priorities but release B with an offset t relative
to A, where t is arbitrary but small.

Solutions a) and b) find it easiest to avoid threads for pro-
gram composition even though they may be useful in concep-
tual modelling. Solution c) is what one learns in concurrent-
programming textbooks under the head of “condition syn-
chronisation”. Since Java’s wait/notify/notify-all complex is
awkward to use and, in general, hardly analysable for tem-
poral costs, Java’s event mechanism (solution d)) seems to
be the better alternative (cf. [17]) but introduces a linguis-
tic and conceptual asymmetry into the problem. Solutions



f) and g) are what concurrent-programming textbooks ad-
monish us not to do: “Never rely on scheduling for program
correctness!”. But since the real-time programmer has to
rely on a scheduler for keeping his deadlines and therefore
puts priorities into his code anyhow, the question is rather
not one of principles but of software-engineering merits like
clarity or maintainability. In examples f) and g), the pro-
grammer’s intention and the correctness of his design are not
easy to see, and the solution probably breaks if the software
is altered later on. Solution e), on the contrary, makes the
temporal succesion of A’s and B’s execution clear enough
by fixing a separation point on the time axis. But such ex-
plicit timing has its disadvantage, too: when the program
is moved to another machine, worst case execution times of
A and B change and possibly require another choice for the
offset value t.

In order to improve the software construction process and
the analysability of its result, and to allow leaner or faster
platforms, people have thought about restrictions of the lan-
guage feature set and guidelines of use. In the Ada world,
the Ravenscar profile ([5]) adopts fixed-priority preemptive
scheduling with ceiling-locking as a well-understood basis for
predictability and defines an appropriately reduced tasking
model; more recently, a similar effort for Java was intro-
duced in [17]. “Predictability” in this context means that
a system can be guaranteed to satisfy temporal constraints,
usually deadlines (cf. [8], ch. 1.3). The Ravenscar profiles
are a major step forward, but cannot rule out other prob-
lems with threads like jitter or race conditions, and there is
considerable research activity that explores the suitability
of other models of concurrency, e.g. dataflow, for real-time
programming (cf. [18]). An interesting branch in this activ-
ity is to move beyond working with the traditional release-
time/deadline brackets and instead prescribe precisely when
certain things should happen. Timing as a programming
technique can avoid all the difficulties of threads and their
synchronisation and achieve a degree of determinism where a
sequence of sensor readings is mapped to a unique sequence
of actuator settings, both in the value and the time do-
main. The price, as indicated in the comment to example e)
above, is an inherent danger of overspecification. Time has
many aspects and functions in software (and everywhere):
a precise clock value may be relevant, but often we need
less, e.g. a certain order of events, or that some action is
repeated with a specified frequency. Time values that are
not derived from the physical context but just brought in
as a convenient way to coordinate concurrent activity may
unnecessarily constrain or even prevent the realisation of a
design.

We believe that restrictive efforts like the Ravenscar pro-
file should be complemented by work that makes such new
programming models available in Java, for experimentation
or serious use. In the present paper, we describe the design
and implementation of a Java framework for Giotto, a recent
real-time language, which Henzinger, Horowitz and Kirsch
designed for control software with periodic behavior [13].

Giotto distinguishes communications and computations.
Communications occur at predefined times and are virtually
instantaneous; they move values between sensors, computa-
tions and actuators. Computations, in contrast, take time

and live in the intervals between the communications; com-
putations use and produce values to realise control laws. –
It may help to compare this layout with synchronous lan-
guages like Esterel, cf. e.g. [12], and with static clock-driven
scheduling. In contrast to the first, Giotto’s synchronous
parts do not contain cyclic dependencies and therefore avoid
problems with fixed points and consistency; furthermore
Giotto realistically complements synchrony with non-zero-
time computations. As regards static scheduling, note that a
Giotto program defines a time-table for input/output events
and not a schedule for the computational work; the former
should reflect the temporal needs of the control problem,
whereas the latter is indirectly constrained but not actually
fixed by the communication instants: any scheduling scheme
– clock-driven, preemptive fixed priority, earliest-deadline-
first etc. – is welcome to try to map computational work to
processor time so that the specified input/output times are
kept. Giotto thus returns scheduling to its traditional role
as part of the implementation: in this view, and contrary
to what goes on in our examples f) and g), scheduling has
no part in the actual programming but, by suitable alloca-
tion of resources, helps to make execution agree with the
given program semantics. – A related programming model
appeared in the TCEL language by Gerber and Hong [10],
which features a distinction of temporally constrained “ob-
servable” events and “unobservable” computations, which,
as far as data dependencies allow, can be placed anywhere
on the time axis. This approach is somewhat more expres-
sive and more complicated than Giotto; the main impetus of
TCEL is to have a smart compiler rearrange code portions
to improve feasibility.

To enable Giotto-style programming in Java, we build a
framework called Jiotto, which can be used on any RTSJ
compliant Java virtual machine. We will not bother with
concrete Giotto syntax and, correspondingly, a translator,
but rather define Java datatypes (classes), which represent
abstract syntax, i.e. the elements of a Giotto program, and
which the user instantiates and then passes to a likewise pre-
defined executive component to get the specified behavior.
Our approach has some similarity to the “embedded lan-
guage” technique, which has become popular in the func-
tional programming community (see e.g. [14]), because it
allows the user to work in his accustomed environment and
makes changes and additions easy. In our implementation
we tried to keep to the Ravenscar Java profile but could not
avoid some characteristic deviations.

We shall tell more about Giotto in Sect. 2. Section 3 will
describe our framework building, and Sect. 4 will sum up
and indicate future work.

2. A SHORT DESCRIPTION OF GIOTTO
To make our paper reasonably self-contained, this section
recapitulates the main points about Giotto. Still, the reader
may wish to consult [13] as the authoritative description. –
Giotto is not a complete programming language but meant
to define organisational skeletons that must be fleshed out
with the help of some host language, e.g. with subroutines
written in C for the computational work.

The principal elements of a Giotto program are ports, tasks,
drivers and modes, which, loosely speaking, represent com-



munication infrastructure, work to be done, communication
& control and configuration.

Ports function like program variables, with write and read
operations and persistency between writes. Ports may be
shared for communication. There are sensor ports, whose
values come from the environment, and task ports and ac-
tuator ports for computed content.

Tasks compute values for their output ports from values of
their input ports and then terminate. Giotto tasks must
not be confused with threads but should be viewed as sub-
routines, or, even better, pure functions – without side ef-
fects, internal synchronisation points etc.. Tasks are invoked
periodically, and privately used ports can give a notion of
state across invocations; so there results some similarity to
threads.

Drivers are responsible for task invocations. They load
the input ports with values which may be constants or, as
the general case, readings from sensor ports or task output
ports. In addition, drivers can be guarded, i.e. evaluate a
predicate on current port values and thus decide whether
the task in question shall be actually executed or not. (So
drivers can e.g. be used for the approximative technique
of dealing with events in a time-driven context by polling.)
Similarly, drivers are used for writing values to actuators.

A Giotto program consists of a nonempty set of modes,
which represent distinct ways of system operation like e.g.
take-off, cruising or landing for aircrafts. A mode defini-
tion names the tasks that shall be invoked and associates
frequencies and drivers with them. Actuator updates are
specified similarly. All frequencies are interpreted relative
to a period which is assigned to the mode. – Mode switches
are specified by a target mode and, again, a frequency and
a driver for the decision making. There is one designated
start mode.

Figure 1 shows a (meaningless) example similar to [13], p. 91
(concrete syntax for Giotto seems to be not fixed yet). Note
that the definitions of driver-, guard- and task-functions are
missing as they are programmed in some other language.

Next we describe the semantics of a Giotto program. For
readibility and brevity, we use a semi-algorithmic style
rather than give a mathematical definition based on se-
quences of states (but see [13]), and we leave out mode
switching, i.e. assume that there is just one mode.

Let p be the period of the mode, and let task T be invoked
with frequency f . Then the sequence t0 = 0, ti+1 = ti + p/f
defines the event times for task T ; for actuators, the event
times are defined in the same way. The ordered merge of all
such sequences gives the event times of the mode. At any
event time instant, several things must be done, stepwise
and in a fixed order. The synchrony hypothesis here is that
this work is not interrupted, and that the next event time
is far enough in the future. As a further descriptive aid, we
say that a task always is either active or not. A task, if
active, ceases to be so at (the beginning of) its next event
time; conversely, a task may become active only at (the end
of) its event times. At the beginning, time t = 0, all tasks

inport

port i0 type integer

port i1 type integer

outport

port o0 type integer

port o1 type integer

task t0 input i0 output o0 function t0Function

task t1 input i1 output o1 funciton t1Function

driver d0 source o0 guard guardTrue destination i0

function h0

driver d1 source o1 guard guardTrue destination i1

function h0

driver d2 source o0 guard guardD2 destination o1

function h0

driver d3 source o1 guard guardD3 destination o0

function h0

mode m0 period 400 ports o0

frequency 4 invoke t0 driver d0

frequency 2 switch m1 driver d2

mode m1 period 400 ports o1

frequency 1 invoke t1 driver d1

frequency 1 switch m0 driver d3

start m0

Figure 1: Example Giotto program

are inactive, and all ports are suitably initialised. Now for
all event times t of the mode, Fig. 2 describes the pertinent
activities.

Let us emphasize two points. First, Giotto semantics pre-
scribes when the input ports for a task invocation shall be
loaded and when its results shall become available through
its output ports. (And note that if several tasks have a com-
mon event time, the output ports of all of them are written
before possibly read.) Second, Giotto semantics does not
prescribe exactly when an invoked task must be executed,
but only implies that execution must happen in a certain
time interval, between the parameter passing at some event
time ti and the request for results at the next (for the task)
event time ti+1. There are several consequences:

• By the first remark, a Giotto program is outwardly
deterministic. Depending on input values, processor
load, platform characteristics etc., an invoked task will
take more or less time to compute its results, but these
results are made public for use always after the same
period. Note that Giotto makes it easy to modify pro-
grams; since tasks are just functions without internal
synchronisation points, the addition e.g. of some more
tasks to a mode cannot lead to complications like dead-
lock that would make the specified temporal behavior
logically impossible.

• By the second remark, there is much freedom for
implementation, including internal nondeterminism.
An obvious and easy scheme is to bind Giotto task



for all tasks T

if t is an event time of T and T is active

set T not active;

write the result of T to its output ports;

end if,

end for;

for all sensor ports S

update S according to environment;

end for;

for all actuators A

if t is an event time of A

update A according to driver,

end if;

end for;

for all tasks T

if t is an event time of T

and driver guard is true

set T active;

update input ports according to driver;

arrange for T to be executed after t;

end if,

end for;

Figure 2: Event Time Activities

functions to Java threads and apply rate-monotonic
scheduling to them. In the next section, we describe
how a master thread can ensure the required order-
ing of communications. If worst case execution times
are known, schedulability analysis (per mode) can be
done by the response test (cf. e.g. [7]), with task peri-
ods (= deadlines) explicitly given by the quotients of
mode periods and task invocation frequencies in the
program.

• Finally note that Giotto, like any language that al-
lows to set temporal bounds for some activity, cannot
on its own make the intended semantics come true:
there must be a feasibility proof that combines pro-
gram and platform characteristics. Even when such a
proof is given, it may be wise to provide for deadlines
that were missed because of exceptional conditions.
Giotto, like the time-driven paradigm in general (cf.
Kopetz’ Time Triggered Architecture, [16]), provides
an excellent basis for fault tolerance, esp. for error
detection and containment: at the beginning of each
event time, check that all task executions which should
have finished did so indeed and produced acceptable
results.

Let us conclude this section with a short note about mode
switching. To preserve determinacy, Giotto forbids that
more than one mode switch guard evalute to true at the
same time. Another obvious problem is what to do with ac-
tive tasks at mode switch time. Giotto semantics lets such
tasks continue and tries to smooth things out by jumping
to a point near the end of a round of the target mode. This
is questionable; it e.g. may cause intolerable delay (think of
the quintessential switch to failure mode). We are consid-
ering alternatives, including discontinuation of task evalua-
tions, but at present have not worked out a good solution
either.

(The current Jiotto version does not support mode switches
that do not coincide with task terminations.)

3. THE FRAMEWORK
The goal is to enable the Java programmer to construct
something similar to a Giotto program and have it executed
in agreement with Giotto semantics. There also are some
subsidiary “syntax-related” goals like checking wellformed-
ness of the pseudo-program (e.g. that two tasks do not use
the same port for their output), produce sufficiently abstract
documentation or help with the analysis of temporal feasi-
bility (relative to platform characteristics). Of these three,
our framework at present contains only a serious attempt at
the first item, sanitary checks.

3.1 Representation Technique
A Giotto program contains ports, tasks, drivers and modes;
a mode contains task invocations, actuator-updates and
mode-switches; the top-level notion, i.e. the proper pro-
gram, is the set of modes together with an indication of the
start mode. (Recall our informal explanation in Sect. 2 or
consult [13] for more details). A Jiotto user has to create
and assemble instances of these notions, according to his
programming purpose. Most objects are generated directly
from class definitions in our framework with the help of fac-
tory methods, using parametrisation to specify what exactly
is wanted. A call like

createPort(InPort.class,0,42,’’InPort-0’’);

creates an input port object whose value type, as inferred
(via overloading) from the initial value 42, is integer, whose
identity number (for internal use, e.g.indexing) is 0 and
whose string-identifier (for producing reports, error mes-
sages etc.) is “InPort-0”. Objects of other “linguistic”
types are created in a similar way, and sometimes additional
setter-methods are employed for greater convenience or to
break cyclic dependencies among to-be-defined objects. To
create driver and task functions, the Jiotto user must pro-
vide his own class definitions, based on given interfaces. The
interface for task functions e.g. contains just the relevant
signature definition

public void f(InPort[] inPorts,

ModePort[] modePorts,

PrivatePort[] privatePorts)

Remember that such function definitions should be free of
side effects, and if the function body creates objects, they
must be allocated in scoped memory.

Internals of the classes for the Giotto elements – most of
which are aggregates of some other – are not very interest-
ing; we generally used arrays for collections because object
creation is confined to an initial set-up phase of program
execution.

The Java code in the appendix shows the small example of
Fig. 1 in Sect. 2 as set up in Jiotto.



3.2 Execution Technique
Giotto semantics, as we already pointed out, is abstract
enough to allow very different implementation strategies.
One could e.g. try static scheduling and therefore expand
the program-defined time table for task invocations (in the
Giotto sense) into a more finely grained schedule that ad-
ditionally fixes the actual intervals in which each task func-
tion is evaluated. Or one can choose some form of dy-
namic scheduling. In a RTJS and Ravenscar context, rate-
monotonic fixed-priority scheduling seems an especially nat-
ural and easy choice, and we use this in our present imple-
mentation.

Recall that Giotto tasks are functions together with ports for
argument/result values, and that these functions are evalu-
ated repeatedly according to the frequency specified in the
invocation part of a mode. As indicated above, we represent
Giotto task functions by Java methods with a suitable signa-
ture, but to have the corresponding computational workload
managed by a fixed-priority scheduler, we bind a Java carrier
thread to each such method (Giotto task function) so that
the run method of the thread repeatedly calls the function
method. These carrier threads get rate-monotonic priorities.
But we cannot employ standard technique to realise the pe-
riodic behavior. Remember that Giotto semantics, for each
event time, demands a deterministic series of data move-
ments that cuts across all tasks that finish/start at this time
(Sect. 2). To secure the required order of reads and writes
we have to get more explicit control over the concerned car-
rier threads. We introduce an additional control thread for
this purpose. This unique thread has highest priority and is
the only technically periodic thread (in the sense of calling
waitForNextPeriod()); its period is defined by the coarsest
temporal resolution possible for the present mode, i.e. the
least common multiple of the invocation etc. frequencies.
The carrier threads are directed by the control thread via
wait/notify condition synchronisation on their event times
and in this indirect way get their periodic behavior. This
is a deviation from Ravenscar-Java but harmless since each
wait/notify relates to just one pair of threads, viz. carrier
and control thread, and does not create unpredictable wait
sets. – The semantics of output ports also requires a mo-
ment of thought. They must be written only at event times
and not change in between. Since in general task function
results will be ready before the official time, one has to store
them in auxiliary variables until then.

Another reason for introducing the control thread is the need
to freeze tasks (and therefore carrier threads) when not used
in some mode and later revive them again. – As an alter-
native technique, one may consider Java’s event mechanism
and use eventhandlers, which are schedulable objects too,
for Giotto tasks. At present, we cannot offer experience
with this possibility, and it may not provide much of an al-
ternative as long as eventhandlers themselves are realised by
threads.

The control thread implements the operational Giotto se-
mantics described in Sect. 2, i.e. at any event time of the
current mode it moves data around, makes decisions and
releases tasks. It is responsible for some additional techni-
calities like, on a mode switch, adjusting carrier thread pri-
orities (this is another unproblematic deviation from Raven-

scar; one must do schedulability analysis mode-wise), deter-
mining its own period and so on. Furthermore, the control
thread detects and acts upon deadline violations of Giotto
tasks, though, at the moment, we have not defined and im-
plemented proper fault tolerance measures. – Figure 3 shows
our thread interaction structure.

3.3 Overall Structure
We follow the Ravenscar-Java philosophy of dividing the ex-
ecution of a real-time application into two consecutive parts,
the initialisation phase and the mission phase ([17]). In the
non-timecritical initialisation phase a highest priority Real-
timeThread is createted which in turn constructs all neces-
sary objects (and threads) in immortal memory. Before ter-
minating itself, this thread starts the application threads,
which from then on run under the chosen scheduler policy,
using only immortal or scoped memory. Ravenscar-Java of-
fers an initialiser thread class whose run method has to be
rewritten according to application needs.

In the case of Jiotto applications, this run method first cre-
ates the control thread and then constructs the pseudo-
Giotto program, i.e. objects for ports, drivers, tasks
and modes (and subsidiary objects for task functions and
drivers); once again look at the code in the appendix. After
termination of the initialiser thread, the control thread runs
(we assume FIFO-within-priorities) and directs the execu-
tion of the carrier threads as described above. We found
it convenient to add to the responsibilities of the control
thread:

We let the control thread, which, by the way, is a singleton,
act as the general interface that the Jiotto programmer uses
for all his definitions and creations that form the pseudo-
Giotto program; especially, the relevant factory methods for
ports etc. are invoked through methods of the control thread
object. When finally started, the control thread performs
the sanity checks on the pseudo-program and does last ar-
rangements for its execution, e.g. determines and sets car-
rier thread priorities.

4. CONCLUSION
We described a framework that supports the Giotto pro-
gramming model in Java. This model is intended for peri-
odic control applications, and, as far as this domain goes,
has the virtue of combining the determinacy of the tradi-
tional cyclic executive with the flexibility of a threading ap-
proach: the Giotto programmer specifies the timing of I/O
events but leaves it to the implementation to accomodate
the computational work that realises functionality. Our im-
plementation, which has a cyclic control thread supervise
worker threads, nicely reflects this distinction.

Other implementation strategies are possible and possibly
worthwhile, and we mentioned some minor alternatives in
the text. A perhaps important improvement of control
thread efficiency is this: In the present implementation, the
control thread is periodic, relying on evenly spaced event
times that are taken from the smallest common multiple of
frequencies used in the present mode. This is likely to be
wasteful; in a mode with invocation frequencies 3 and 7,
there are only 9 event times, but our scheduler will inspect
21 for work to do. As an alternative, one can precompute an



Figure 3: Thread Interaction Structure: periodic control thread and carrier threads

event list (as in discrete event simulation) that names event
times and the associated work and have the control thread
move from one event time in the list to the next. Since these
times are not evenly spaced, we now need a timer and again
deviate from the Ravenscar recommendations.

We shall combine the revision of our implementation with
modifications of its scope:

First we want to integrate basic fault tolerance measures. If
a carrier thread fails to produce its results in time, a rea-
sonable strategy for the control thread is to use the most
recent result instead. There are three possible causes for
this failure situation: evaluation of the Giotto task function
can produce a recognizably wrong result, stop because of
a runtime error or take too much (possibly infinite) time.
The first case requires some user-supplied healthiness test
for results. In the second case the carrier thread should
catch the exeception (i.e. not terminate but go on with
its main loop!). The last case makes it necessary to aban-
don the current function evaluation; this of course means
Asynchronous Transfer of Control, which is a problematic
feature because it re-introduces nondeterminacy. Ravenscar
excludes it; but it seems to be unavoidable in case of failure.
– A related problem comes up with mode switches. As long
as task functions really are pure functions, there should be
no fundamental problem in abandoning an evaluation, and
it may be better to substitute a dummy result than to delay
the mode switch until a result from the old mode becomes
available.

Second, we want to go beyond Giotto-style periodicity,
which may become awkward or inefficient in practice. Con-
sider an application where one task, every 500 ms, reads
some value and adds it to a sum, and a second task, ev-
ery 24 h, computes the mean value (which takes less than
500 ms too). In Giotto, periodicity offers three alternatives:
first, a mean value becomes available only after another 24 h

(which probably is useless); second, we release the mean
value task every 500 ms too (doing nothing useful all day
long); third, we throw in a mode switch every 24 h and
back again 1 s later just to let the mean-value task execute
once. Clearly, we need what in traditional terms is called
“deadline smaller than period”, and this should fit into the
Giotto model. It only requires that event times need not
necessarily bear read as well as write actions, and that task
timings are defined by two numbers instead one, viz. fre-
quency and relative deadline. – There is a somewhat more
fundamental problem in the background: We mentioned in
our introduction that the use of explicit timing to coordi-
nate concurrent threads is in danger of overspecification; for
something like the consumer-producer problem, it is natu-
ral to introduce a separating point in time, but a program
should not specify a specific clock value for it, since the cho-
sen value could be an unrealisable requirement while a whole
range of other values would do the trick. So the question
is whether one could specify the intended ordering with the
help of time variables and solve for these unknowns in the
context of schedulability analysis for a given platform, with
known worst case execution times.

5. REFERENCES
[1] M. Amersdorfer. Jiotto – a Java framework

implementing the Giotto semantics. Master’s thesis,
Universität Salzburg, 2004.

[2] P. Amey and B. Dobbing. High integrity ravenscar. In
Proceedings of Reliable Software Technologies – Ada

Europe 2003, volume 2566 of Lecture Notes in

Computer Science. Springer, 2003.

[3] G. Bollella, B. Brosgol, P. Dibble, S. Furrer,
J. Gosling, D. Hardin, M. Turnbull, and R. Belliardi.
The real-time specification for Java. www.rtj.org,
2001.

[4] B. Brosgol and B. Dobbing. Real-time convergence of



Ada and Java. In Proceedings of ACM SIG Ada 2001,
2001.

[5] A. Burns, B. Dobbing, and G. Romanski. The
ravenscar tasking profile for high integrity real-time
programs. In Proceedigs of Reliable Software

Technologies – Ada Europe 1998, volume 1411 of
Lecture Notes in Computer Science. Springer, 1998.

[6] A. Burns, B. Dobbing, and T. Vardanega. Guide for
the use of the ravenscar profile in high integrity
systems. Technical Report YCS-2003-348, University
of York, 2003.

[7] A. Burns and A. Wellings. Real-Time Systems and

Programming Languages. Addison Wesley, 2001.

[8] G. C. Buttazzo. Hard Real-Time Computing Systems.
Kluwer, Boston, 2000.

[9] P. Dibble and A. Wellings. The real-time specification
for Java – current status and future work. In
Proceedings of 7th IEEE Symp. on OO Real-Time

Distributed Computing, ISORC 2004, 2004.

[10] R. Gerber and S. Hong. Compiling real-time programs
with timing constraint refinement and structural code
motion. IEEE Transactions on Software Engineering,
21, No.5, 1995.

[11] H. Hagenauer, N. Martinek, and W. Pohlmann. Ada
meets Giotto. In Proceedings of Reliable Software

Technologies – Ada Europe 2004, volume 3063 of
Lecture Notes in Computer Science. Springer, 2004.

[12] N. Halbwachs. Synchronous Programming of Reactive

Systems. Kluwer, Boston, 1993.

[13] T. Henzinger, B. Horowitz, and C. Kirsch. Giotto: A
time triggered language for embedded programming.
Proceedings of the IEEE, 91(1), January 2003.

[14] P. Hudak. Building domain-specific embedded
languages. ACM Computing Surveys, 28A(4),
December 1996.

[15] C. Kirsch. Principles of real-time programming. In
Proceedings of EMSOFT 2002, volume 2491 of Lecture

Notes in Computer Science. Springer, 2002.

[16] H. Kopetz. Real-Time Systems. Kluwer, Boston, 2001.

[17] Kwon, A. Wellings, and S. King. Ravenscar-Java: A
high integrity profile for real-time Java. In Proceedings

of Joint ACM Java ISCOPE Conference 2002, 2002.

[18] E. A. Lee. What’s ahead for embedded systems?
IEEE Computer, 33(9), September 2000.

[19] J. Ousterhout. Why threads are a bad idea (for most
purposes). Usenix Technical Conference 1996, Invited
Talk, 1996.

[20] A. Wellings. Is Java augmented with RTSJ a better
real-time system implementation technology than Ada
95? Ada Letters, 23(4), December 2003.

APPENDIX
A. JIOTTO REPRESENTATION OF THE

EXAMPLE GIOTTO PROGRAM
import jiotto.*;
public class JiottoExample extends Initialiser {

public void run() {
ControlThreadSingleton ct =

ControlThreadSingleton.getReference();

/* P O R T S */
ct.setNumberOfInPorts(2);
ct.setNumberOfOutPorts(2);
InPort i0 =

(InPort) ct.createPort(InPort.class, 0, 0, "i0");
InPort i1 =

(InPort) ct.createPort(InPort.class, 1, 0, "i1");
OutPort o0 =

(OutPort)ct.createPort(OutPort.class, 0, 0, "o0");
OutPort o1 =

(OutPort)ct.createPort(OutPort.class, 1, 0, "o1");

/* D R I V E R S */
ct.setNumberOfDrivers(4);
TaskDriverGuard guardTrue = new GuardTrue();
ModeDriverGuard guardD2 = new D2Guard();
ModeDriverGuard guardD3 = new D3Guard();

TaskDriver d0 = (TaskDriver) ct.createDriver(
TaskDriver.class, 0, guardTrue, 1, "d0");

d0.transfer(o0, i0);

TaskDriver d1 = (TaskDriver) ct.createDriver(
TaskDriver.class, 1, guardTrue, 1, "d1");

d1.transfer(o1, i1);

ModeDriver d2 = (ModeDriver) ct.createDriver(
ModeDriver.class, 2, guardD2, 1, "d2");

d2.transfer(o0, o1);

ModeDriver d3 = (ModeDriver) ct.createDriver(
ModeDriver.class, 3, guardD3, 1, "d3");

d3.transfer(o1, o0);

/* T A S K S */
ct.setNumberOfTasks(2);

TaskFunction t0Function = new T0Function();
Task t0 = ct.createTask(0, t0Function, "t0");
t0.addInPort(i0);
t0.addOutPort(o0);

TaskFunction t1Function = new T1Function();
Task t1 = ct.createTask(1, t1Function, "t1");
t1.addInPort(i1);
t1.addOutPort(o1);

/* M O D E S */
ct.setNumberOfModes(2);

Mode m0 = ct.createMode(0, 400, "m0");
m0.setNumberOfModeSwitches(1);
m0.setNumberOfTaskInvocations(1);

Mode m1 = ct.createMode(1, 400, "m1");
m1.setNumberOfModeSwitches(1);
m1.setNumberOfTaskInvocations(1);

m0.addModeSwitch(m1, 2, d2);
m1.addModeSwitch(m0, 1, d3);

m0.addTaskInvocation(t0, 4, d0);
m1.addTaskInvocation(t1, 1, d1);



/* S T A R T */
ct.setStartMode(m0);
ct.go();
try {

ct.join();
} catch (InterruptedException e) {

e.printStackTrace();
}

}

public static void main(String[] args) {
new JiottoExample().start();

}
}


