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We discuss a concept of the covariance of sequences in general spaces.
The results are based on the concept of Hilbert spaces with reproduc-
ing kernel. We give a probability-free notion of independence of infinite
sequences. Also a measure of the dependence of two finite sequences in
compact polish spaces is given. The measure of dependence introduced
in this paper vanishes asymptotically iff the sequences are independent.
Furthermore, we give realistic examples and estimations for pseudo ran-
dom sequences in the s-dimensional unit cube, including numerical ex-
amples.

1 Introduction

Given a probability space with a probability P , the conditional probability
P (A|B) is defined as

P (A|B) = P (A ∩B)/P (B). (1)

The random variables X and Y are independent if for all real x and y holds

P (X < x ∧ Y < y) = P (X < x)P (Y < y). (2)

In the case of independence of X and Y the following relation holds

E(XY ) = E(X)E(Y ). (3)
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In general, this condition (3) is not sufficient for the independence of X and
Y in the sense of (2). Therefore, in mathematical statistics the concept of
covariance

cov(X,Y ) = E(XY )− E(X)E(Y ) (4)

is used. The covariance of X and Y in this sense measures the magnitude of
dependence of these random variables. Such concepts deserve a probability
measure and an expectation of the random variables under consideration.

In this paper we consider a somewhat different access: Given two spaces
E1 and E2, let x1, x2, ...xn, ... and y1, y2, ...yn, ... be two arbitrary sequences
in E1 and E2 respectively. Let f (x) and g (y) be two arbitrary continuous
functions over E1 and E2. We, now, define the N -covariance CN of f (x) and
g (y) via

cN (f, g) :=
1
N

N∑
n=1

f (xn) g(yn)− 1
N2

N∑
n1n2=1

f (xn1) g(yn2). (5)

This definition in an obvious way follows paradigm (4), whereas the mathe-
matical expectation is replaced by the mean values of the values of f (x) and
g (y), evaluated at the points xn and yn, n = 1, ...N , respectively.

By means of (5) it is possible to define the concept of asymptotically un-
correlated sequences.

Definition: The sequences (x1, x2, ..., xn, ...) and (y1, y2, ..., yn, ...) are called
asymptotically uncorrelated if for all continuous functions f (x) and g (y) holds

lim
N→∞

cN (f, g) = 0. (6)

The first question to be answered is the question whether such asymptot-
ically uncorrelated sequences do exist. We give a first

Example: Let (x1, y1), (x2, y2) , ..., (xn, yn) be a uniformly distributed
sequence in I × I = [0, 1) × [0, 1). The famous Weyl’s criterion says that for
all continuous functions f (x, y) , (x, y) ∈ I × I holds

lim
N→∞

1
N

N∑
n=1

f (xn, yn) =
∫

I

∫
I
f (x, y) dxdy (7)

Spezializing f (x, y) = f (x) g (y) we immediately get relation (6).
Examples for uniformly distributed sequences are the sequences xn =

{nθ1}, yn = {nθ2}, n = 1, 2, ... . ({x} denotes the fractional part of x.)
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As an application of the classical approximation theorem of Kronecker
we get: The sequences {nθ1} = xn and {nθ2} = yn are asymptotically un-
correlated if and only if the numbers θ1 and θ2 are independent over the
rational number field. We recall: θ1 and θ2 are rationally independent if
m1θ1 + m2θ2 = 0 implies m1 = m2 = 0. For example, the numbers

√
2 and√

3 are rationally independent.

2 Hilbert Spaces with Reproducing Kernel

Our discussion shows:

1. The definition of the covariance ot two random variables uses the inner
product E(XY ) which immediately leads to the classical Hilbert space
L2 generally containing functions that essentially are not continuous.

2. The definition of cN (f, g) implies that cN (f, g) has all the properties of
an inner product. On the other hand the continuous functionals f 7→
f (xn), g 7→ g (yn) are essentially used whereas the functions f and
g are continuous themselves. So we need a Hilbert space of continuous
functions. Such Hilbert spaces are called Hilbert spaces with reproducing
kernel (H.R.K.).

Definition: A Hilbert space H consisting of continuous functions f : E →
C is called a Hilbert space with reproducing kernel (H.R.K.) if there exists a
function K (x, y) ,K : E × E → C such that 〈f (x) ,K (x, y)〉 = f (y) holds.

It is well known that such a reproducing kernel is positive definite. Con-
versely, every positive definite kernel defines a Hilbert space which it repro-
duces. There are many more and less classical examples of H.R.K. Let us con-
sider the s-dimensional unit cube Is = [0, 1)s = E. Via the second Bernoulli
polynomial we introduce the following kernel K2(x, y):

K2((x1, ..., xs), (y1, ..., ys)) :=
s∏

i=1

(
1− π2

6
+
π2

2
(1− 2{xi − yi})2

)
(8)

That kernel is knowingly positive definite. It plays an important role in the
area of number theoretical numerics and in uniform distribution modulo 1.
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3 The measure of covariance for compact metric
spaces

Let E be a compact metric space. Let ω1 = (x1, x2, ..., xN , ...) and ω2 =
(y1, y2, ..., yN , ...) be infinite sequences in E. After all let (H,K) be a Hilbert
space of continuous functions f : E → C and K = K (x, y) the reproducing
kernel of H. We give the following

Defintion: The sequences ω1 and ω2 are weakly asymptotic uncorrelated
with respect to K (shortly: K-uncorrelated) if for all pairs of functions f, g ∈ H
holds

lim
N→∞

 1
N

N∑
n=1

f(xn)g(yn)− 1
N2

N∑
n1,n2=1

f(xn1)g(yn2)

 = 0. (9)

This definition implies the conditions (5) and (6) exactly. In order to
establish the asymptotic uncorrelation properties of the sequences ω1 and ω2

one has to check (9) for all pairs of functions. It is the aim of this paper to
define a number CN (ω1, ω2) in such way that ω1 and ω2 are asymptotically
uncorrelated if CN (ω1, ω2) −→ 0 for N −→∞.

On the other hand should CN (ω1, ω2) be an estimation for

1
N

N∑
n=1

f(xn)g(yn)− 1
N2

N∑
n1,n2=1

f(xn1)g(yn2) = cN (f, g) . (10)

We, now, recall some well-known definitions and properties of the Hilbert
space with reproducing kernel: Taking an arbitrary orthonormal base (O.N.B)
(ϕn)n≥1 of H one gets the representation

K(x, y) =
∞∑

m=1

ϕm(x)ϕm(y). (11)

Given a positive definite kernel K(x, y) one gets the reproducing kernel K(2)

of H ×H via
K(2)((s, t), (u, v)) = K(s, u)K(t, v) . (12)

Given two O.N.B.s ψm (y) and ϕm(x) in H then the functions ϕm1(x)·ψm2 (y),
m1,m1 = 1, 2, ... generate an O.N.B. in H(2) = H ×H. Doing so one gets the
representation

K(2)((s, t), (u, v)) =
∞∑

m1,m2=1

ϕm1(s)ψm2(t) ϕm1(u)ψm2(v). (13)
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Assuming the continuity of K(x, y) one receives

max
y

‖ K(x, y) ‖= max
y

K(y, y)1/2 =: C <∞ (14)

and furthermore

max
u,v

‖ K(2)((s, t), (u, v)) ‖2= max
u,v

(K(u, u)K(v, v))1/2 = C2. (15)

We are now able to formulate the following

Lemma: Given a reproducing kernel L(w, z) as a function on D×D where
D is compact and metrizable, then for every O.N.B. (αm (x))m of the Hilbert
space HL the infinite series

L(w, z) =
∑
m

αm(w)αm(z) (16)

does converge uniformly.

Proof: Let LM (w, z) =
M∑

m=1
αm(w)αm(z) , L′M (w, z) =

∑
m>M

αm(w)αm(z).

According to our preconditions the kernel L(z, z) = LM (z, z) + L′M (z, z) is a
continuous function on D, whereas LM (z, z) converges monotonically increas-
ing to L(z, z). According to the famous Dini’s theorem the convergence turns
out to be uniform. Furthermore, because of the orthonormality of the function
system αm (x) ,m ∈ N, and because of the Cauchy-Schwarz inequality we get

|L′M (w, z)|2 ≤ |〈L′M (v, z), L′M (v, w)〉|2 ≤ L′M (z, z)L′M (z, z). (17)

Because of the uniformly vanishing of the L′M (z, z)

lim
M→∞

max
s∈D

L′M (z, z) = 0, (18)

the same holds for L′M (w, z) for all (w, z) ∈ D ×D. This concludes the proof
of the lemma.

Using these assumptions we proof the following

Theorem: Given two asymptotically uncorrelated sequences in the sup-
port E of the continuous kernel K(x, y), where E is compact and separable
then both sequences ω1 = (x1, x2, ..., xN , ...) and ω2 = (y1, y2, ..., yN , ...) are
asymptotically uncorrelated even in the strong sense. Consequently, using

CN :=

∥∥∥∥∥∥ 1
N

N∑
n=1

K(2)(s, t), (xn, yn)− 1
N2

∑
n1,n2=1

K(2)((s, t), (xn1 , yn2))

∥∥∥∥∥∥
2

(19)
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we get: limN→∞ cN (f, g) = 0 for all f, g ∈ H if and only if limN→∞CN = 0.
More precisely, we get the estimation

|cN (f, g)| ≤‖ f ‖ ‖ g ‖ CN .

Proof: Because of the reproducing property of K(2) for all n1, n2 =
1, 2, ..., N, ... we get

f(xn1)ḡ(yn2) = 〈f(s) · ḡ(t),K(2)((s, t), (xn1 , yn2))〉 (20)

Henceforth holds the representation of cN (f, g) as an inner product

cN (f, g) = 〈f(s) · ḡ(t), BNK
(2)〉 (21)

with

BNK
(2) =

1
N

N∑
n=1

K(2)((s, t), (xn, yn))− 1
N2

N∑
n1,n2=1

K(2)((s, t), (xn1 , yn2)).

(22)
Cauchy-Schwarz’s inequality immediately delivers the estimation asserted in
the theorem:

|cN (f, g)| ≤‖ f ‖ ‖ g ‖ CN . (23)

Now we assume that the sequences ω1 = (x1, x2, ...xN , ...) and ω2 = (y1, y2, ...yN , ...)
are asymptotically uncorrelated. We show now limN→∞CN = 0. After a short
computation one gets

C2
N =

1
N2

N∑
n1,n2=1

K(2)((xn1 , yn1), (yn2 , yn2))−

− 1
N3

N∑
n=1

N∑
n1,n2=1

K(2)((xn1 , yn2), (xn, yn))−

− 1
N3

N∑
n=1

N∑
n1,n2=1

K(2)((xn, yn), (xn1 , yn2))+

+
1
N4

∑
n1,n2,n3,n4

K(2)((xn1 , yn2), (xn3 , yn4)). (24)

Because of the representation (13) of the kernel K(2)((s, t), (u, v)) after some
calculations one gets

C2
N =

∑
max(m1,m2)≤M

|cN (ϕm1 , ϕm2)|2 +
∑

max(m1,m2)>M

|cN (ϕm1 , ϕm2)|2.
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In accordance with the above lemma we choose a natural number M in such
a way that ∑

max(m1,m2)>M

|cN (ϕm1 , ϕm2)|2 <
ε2

2
. (25)

is fulfilled. Because of the assumption that the sequences ω1 and ω2 are weakly
asymptotically uncorrelated there exists a natural N0 (ε) such that for all
N > N0 (ε) holds

∑
max(m1,m2)≤M

|cN (ϕm1 , ϕm2)|2 <
ε2

2
. (26)

Therefore, for all N > N0 (ε) holds

CN < ε, (27)

which means
lim

N→∞
CN = 0. (28)

On the contrary, given (28) from (23) immediately follows that for all
f, g ∈ H the relation

lim
N→∞

cN (f, g) = 0.

holds. This completes the proof.

Remark: The complexity of computation of the estimation CN accord-
ing to (24) is of order 5N2. In general this estimation of complexity of
computation cannot be improved in an essential manner: all pairs (xn1,yn2),
n1, n2 = 1, ..., N are to be used computing our measure of correlation.

From the practical point of view the use ot the s-dimensional unit cube
is one of the most important cases. Therfore, we give an application for
E = Is = [0, 1]s:

Let ω1 and ω2 be sequences from Is, ω1 = (x1, x2, ...xN , ...), ω2 = (y1, y2, ...yN , ...)
where xN =

(
x

(1)
N , ..., x

(s)
N

)
, yN =

(
y

(1)
N , ..., y

(s)
N

)
, 0 ≤ x

(i)
N , y

(i)
N ≤ 1, i = 1, ..., s,

N ∈ N. According to (8) the kernel K(x, y) consists of the second Bernoulli
polynomial. We set K2

(
(x(1), , ..., x(s)),

(
y(1), , ..., y(s)

))
= K2(x, y). We, then,

get

FN (w1) =

 1
N2

N∑
n1,n2=1

K2(xn1 , xn2)− 1

1/2

(29)
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which is the diaphony of ω1 introduced by Zinterhof [9] and investigated by
various other authors. The kernel K2 is interesting because of the fact that
ω1 is uniformly distributed if and only if limN→∞ FN = 0. For the kernel K2

on Is the estimator CN (ω1, ω1) writes as

C2
N =

1
N2

N∑
n1,n2=1

K2(xn1 , xn2)K2(yn1 , yn2)−

− 2
N3

N∑
n=1

N∑
n1,n2=1

K2(xn1 , xn)K2(yn2 , yn)+

+
1
N4

 N∑
n1,n3=1

K2(xn1 , xn3)

 N∑
n2,n4=1

K2(yn2 , yn4

 . (30)

In the case of number theoretical numerics different well-distributed sequences
of nodes x1, x2, ...xN , ... ∈ Is = [0, 1]s are available. These Quasi Monte
Carlo sequences in general share very good properties with respect to high
dimensional numerics. They are used for simulation purposes as well, whereas
some statistical properties such as correlation properties play an important
role. We restrict us to one of the most important examples:

The integer vector a = (a1, ..., as) is, after Hlawka, called a good lattice
point or, after Korobow, an optimal coefficient if for a = a(N) holds

1
N

N∑
n=1

K2

(
a · n

N
, 0
)
− 1 ≤ Cs

ln2β(s)N

N2
. (31)

This definition of an optimal coefficient is different from the definitions given
by Korobow, Bachwalow and Hlawka, however, it is equivalent. Small indexes
β (s) ≤ s are more favourable, of course. An index β (s) ≤ s is possible, as is
well known.

Theorem: Let K2 be the Bernoulli kernel according to (8), and let
(a1, ..., as, b1, ..., bs) be optimal coefficients for the modulus N and the dimen-
sion 2s, β(2s) being the index. In this case the following estimation holds

CN = O

(
(lnN)β(2s)

N

)
. (32)

Proof: For N ∈ N and m ∈ Z we set
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δN (m) =
{

0 , N - m
1 , N | m . (33)

So, for integer vectors (m1, ...,ms) and (d1, ..., ds) holds

δN (d1m1 + . . .+ dtmt) =
1
N

N∑
n=1

e2πi(d1m1+...+dsms)·n/N . (34)

From the general case (30) we deduce:

C2
N =

1
N2

N∑
n1,n2=1

K2(xn1 , xn2)K2(yn1 , yn2)−

− 2
N3

N∑
n=1

N∑
n1,n2=1

K2(xn1 , xn)K2(yn2 , yn)+

+
1
N4

 N∑
n1,n3=1

K2(xn1 , xn3)

 N∑
n2,n4=1

K2(yn2 , yn4)

 =:

=: I − II + III . (35)

The Fourier expansion of K2(x, y) is well known:

K2(x, y) =
∑

m∈Zs

e2πim(x−y)/R2(m), (36)

Here denotes R(m) = max(1, |m1|) · max(1, |m2|) · · ·max(1, |ms|). So, from
(31) we get the expression

I =
1
N2

∑
n1,n2

∑
m1,m1∈Zs

e2πi(m1a+m2b)(n1−n2)/N/(R2(m1) ·R2(m2)) =

=
∑

m1,m2∈Zs

δN (m1a+m2b)/(R2(m1) ·R2(m2)) =

= 1 +O

(
lnN)2β(2s)

N2

)
. (37)

Analogously, one gets

II = 2 +O

(
(lnN)2β(2s)

N2

)
(38)
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and

III = 1 +O

(
(lnN)2β(2s)

N2

)
. (39)

This leads to the result stated above:

C2
N = 1− 2 + 1 +O

(
(lnN)2β(2s)

N2

)
. (40)

Without proof we state a similar theorem for the so-called Kronecker se-
quences.

Theorem: The sequences nθ1 and nθ2 are modulo 1 asymptotically un-
correlated if the 2s-dimensional vector (θ1, θ2) is independent over Z2s. Fur-
thermore, for almost all vectors and every ε > 0 holds

CN ((nθ1), (nθ2)) = O

(
1

N1−ε

)
. (41)

In particular one can choose θ = (er1 , er2 , ..., ers , ers+1 , ...er2s), ri 6= rk, 0 6= ri ∈
Q.

The proof is based on methods of Zinterhof [10] which follows from a
famous result from A. Baker.

Finally, we give some few numerical experiments which are performed only
in one dimension s = 1. in row RND we used sequences which are generated
by our built-in random generator. In row EXP we used sequences of the type
n · exp(1) = xn and n · exp(1/2) = yn, respectively.

N 10 50 100 1000 2000 5000
RND 1.0735 0.4677 0.2736 0.1005 0.0658 0.0407
EXP 1.0693 0.30608 0.2022 0.0328 0.0164 0.0069

All of the numerical experiments show that the standard random gen-
erators provide unnecessarily bad results. The type of the built-in random
generator is not known to us.

Final remarks: We introduced the measure of correlation CN for se-
quences x1, x2, ...xN , ... ∈ E and y1, y2, ...yN , ... ∈ E using a reproducing ker-
nel K(x, y) as a main tool. It is possible to generalize the results by intro-
ducing two compact and metrizable spaces E1 and E2 equipped with kernels



On the Covariance of Sequences in General Spaces 79

K1(x, y) : E1 × E1 → C and K2(x, y) : E2 × E2 → C resulting in a mea-
sure of correlation for sequences x1, x2, ...xN , ... ∈ E1 and y1, y2, ...yN , ... ∈ E2.
Such a generalization is interesting form the practical point of view, and for
theoretical reasons as well.
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