Parallel Numerics ’05, 193-206 M. Vajtersic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)
Chapter 7: Systems and Simulation ISBN 961-6303-67-8

A High-Performance
Data-Dependent Hardware Divider

Rainer Trummer®*, Peter Zinterhof!, Roman Trobec?

1 University of Salzburg, Department of Scientific Computing
Jacob Haringer-Str. 2, A-5020 Salzburg, Austria

2 Jozef Stefan Institute
Jamova 39, SI-1000 Ljubljana, Slovenia

Hardware dividers are needed in many areas of applications like computer
floating-point units, communication systems, cryptography, signal pro-
cessing, etc. The performance requirements of these applications differ
regarding data and architectural issues. In this paper, the basic principles
used in hardware integer dividers are shown. A hybrid data-dependent
divider is proposed based on several improvements that speedup division
on average for 600%. Data-dependent performance was simulated on a
parallel computer cluster in order to search a larger number of cases.
Different principles for the generation of random numbers were used to
emphasize potential advantages or drawbacks of the proposed dividers.

1 Introduction

Division is the most complex of the four basic arithmetic operations and, in
general, does not produce an exact answer, since the dividend is not necessarily
a multiple of the divisor. Therefore, the correct quotient and remainder are
usually obtained through performing a sequence of iterations until the desired
precision is reached. This procedure is called sequential division and serves as
the basic principle for many practical implementations [1, 3, 4].

Based on sequential division, the most prevalent representatives are the
so-called radiz-r dividers, where r denotes the radix, typically chosen to be
a power of 2. In order to compute the answer, these dividers perform a

*Corresponding author. E-mail: rtrummer@cosy.sbg.ac.at

194 R. Trummer, P. Zinterhof, R. Trobec

constant number of iterations, depending on the used radix. Several con-
cepts have been developed to speedup the exhaustive sequential process. The
most efficient method is called SRT division, named after their inventors
Sweeney, Robertson, and Tocher, who had the same idea about the same time
[3, 4, 7, 10]. The main principle is to interpret the divisor D and all partial
remainders R; as normalized fractions that are assumed to satisfy the relations
1/2 < |D| < 1 and 1/2 < r|R;| < 1, where r is the used radix. Depending
on the underlying redundant quotient digit set, which can be generalized as
Qi€ {-m,...,—1,0,1,...,m} with (r —1)/2 < m < r — 1, a certain num-
ber of significant digits of the divisor and partial remainder is used to select
an appropriate quotient digit from a look-up table. This selected redundant
quotient digit can be converted to the corresponding binary digits on the fly,
which avoids the need of additional storage place.

The main drawback of SRT division is the need of large look-up tables that
grow quadratically with increasing radix. Depending on the radix used and
quotient digit set, look-up tables can consist of many thousand to millions of
entries. Moreover, generating all of the required divisor multiples for radix 8
and higher is difficult and raises the cost of additional hardware. Due to this,
practical table implementations are restricted to radix 2 and radix 4 [7, 10].
Another drawback is that during the development process of a large look-up
table a few bits can easily get lost, a consequence that has become very popular
as the Pentium Flaw [13].

However, the search for more efficient solutions is greatly encouraged by the
rapidly increasing demand for small and fast integer dividers, needed in many
areas of applications like communication, cryptography, signal processing, etc.
[8, 9, 14]. One of them are data-dependent dividers that execute in variable
time. The basic principle is to skip all redundant operations and carry out
only shifts as long as there are leading zeros of the remainder or divisor,
depending on the algorithm used [5]. This method is called shifting over
zeros and also used in SRT division for normalizing the remainder after each
iteration [2, 3, 4, 7]. Data-dependent dividers do not require any look-up
tables and, in general, achieve a much higher throughput than standard radix-
2 dividers. Therefore, they are primarily incorporated in small architectures
like signal processors. Unfortunately, the speed of data-dependent dividers
is currently not adequate to be also competitive concerning fully pipelined
architectures.

Compared to tons of papers that have been published about SRT division
and related methods [9, 11, 12], very little is available about data-dependent
divider architectures. This was our main motivation to contribute some work
in this field. Referring to the insufficient speed of data-dependent dividers

A High-Performance Data-Dependent Hardware Divider 195

based on the shifting-over-zeros method, our main contribution is a more so-
phisticated hardware divider that achieves an average speedup of 600%.

Section 2 introduces two basic divider concepts, which we implemented
for reliable comparisons with two improved dividers presented in Section 3.
The environment and methods used to analyze the performance are described
in Section 4. The obtained results are discussed in Section 5, followed by
conclusions and a brief outline of future work.

2 Division Arithmetic

The most simple representative of sequential division is the so-called Radiz-2
divider (R2), which can be interpreted as the binary version of the classical
paper-and-pencil method. It is also referred to as performing long division,
since a 2n-bit shift register (SR) is used to hold an n-bit dividend and form an
n-bit quotient. The dividend is placed initially in the n low-order bits of the
register and shifted left 1 bit per iteration. The free least significant bit (LSB)
is then used to store the new quotient bit. Upon completion, the SR contains
the remainder in its high-order word (HW) and the quotient in its low-order
word (LW). The iterative part consists of three basic steps: (1) shift left the
register for 1 position, (2) subtract the divisor from the remainder, (3) store
the result as HW and store the new quotient bit as the LSB.

A demonstration of dividing 7 = 01115 by 3 = 00112, producing quotient
2 = 00102 and remainder 1 = 00015, is given in Table 1. The described division
method implemented by the R2 is generally known as restoring division, since
the remainder must be restored if the subtraction yields a negative result.
The restoring step can be avoided in two ways, either by a method known
as non-restoring division, which does not offer any significant advantage, or
by an elaborated implementation illustrated schematically in Figure 1. The
multiplexor subsequent to the adder chooses between the result representing
the new partial remainder or the preceding one, depending on the adder’s
carry-out signal (CO), which is also used to set the new quotient bit. Note
that subtraction is implemented as 2’s complement addition with the carry-
in signal (CI) set to 1, and therefore, referred to as addition throughout the
rest of the paper. If subtraction yields a negative result, 2’s complement
addition underflows, indicated by CO=0, and restoring of the remainder is
achieved by rewriting the previous one. In Figure 1 right, a demo calculation
for 01112/00115 is shown in binary presentation. Columns show iteration
number, operation type (I initialization, 4+ addition, 0 or 1 CO, W write, and
«— shift-left), HW and LW of the SR, and some comments denoted by //,
respectively.

196 R. Trummer, P. Zinterhof, R. Trobec

Step ‘ HW ‘ LW ‘ Explanation

initialize 0000 0111 | set HW to 0, set LW to dividend
shift-left 0000 111x

subtract —0011 HW — divisor = —0011
—0011 1110 | result is < 0, set LSB of LW to 0, restore HW
restore 0000 1110 | HW + divisor = 0000
shift-left 0001 110x
subtract —0011 HW — divisor = —0010
—0010 1100 | result is < 0, set LSB of LW to 0, restore HW
restore 0001 1100 | HW + divisor = 0001
shift-left 0011 100x
subtract —0011 HW — divisor = 0000

0000 1001 | result is > 0, set LSB of LW to 1, no restoring
shift-left 0001 001x

subtract —0011 HW — divisor = —0010
—0010 | 0010 | result is < 0, set LSB of LW to 0, restore HW
restore 0001 0010 | HW + divisor = 0001

Table 1: Demo of restoring division for 01115/00112 in binary representation.

At the first glance, the additional multiplexor appears to stretch the crit-
ical path and hence to increase the execution time. Actually, the opposite is
the case. The SR basically consists of flip-flops and 2-to-1 multiplexors that
implement write or shift operation. In case of a 1-bit shift-left, the actual
shift is hard-wired by feeding back the n—1 high-order bits combined with
a constant zero-LSB. Referring to the divider, shown in Figure 1, two serial
2-to-1 multiplexors are combined in a 4-to-1 multiplexor that implements in a
single step either initialize, shift, write, or write-shift operation. Due to this
technique, the iterative part of the divider reduces to an addition followed by a
write operation. Initialization places the dividend in bits n, ..., 1 rather than
n—1,...,0, saving an initial shift-left, and consequently 1 complete iteration.
The number of remaining iterations is determined by a counter, which is a
part of the control logic.

If no exceptions occur, the divider always performs n iterations indepen-
dently of the given operands. The great advantage is the constant execution
time, thus making such dividers very attractive for fully pipelined architec-
tures. On the other hand, dividers based on this concept are obviously very
inefficient if operands are relatively small, because then there are many initial
useless iterations. To increase the efficiency of the R2 without changing the
basic architecture, we applied a small modification for initial normalization of
the dividend. Precisely, the LSB of the HW forces skipping of additions until
the most significant bit (MSB) of the dividend, stored initially in the LW,

A High-Performance Data-Dependent Hardware Divider 197

0 10001110 //Divisor=0011
/lits 2’s compl.
//CO=0

REMAINDER -— QUOTIENT | <©007-1100 //remainder.

DIVISOR | 2 w00 1100 //Write

< 0011 1000 //remainder.
+ 1101
M000>, /ICO=1

3 w@0000*100D //Write new
(00010010 //remainder.

/ICO=0
/Iresult

Figure 1: Schematic of Radix-2 divider (left) and demo division 01115/00115
in binary (right).

reaches the HW. We named this modified version Radiz-Two divider (RT) to
distinguish it from the original R2.

An alternative to achieve better performance are data-dependent dividers.
Figure 2 shows the schematic of the Self-Aligning divider (SA) [5]. Our demo
example is given again with the same notation as in Figure 1. Columns show
now the iteration number, operation type, the SR with HW and LW, and
dividend, placed initially in the remainder storage, respectively. The basic
architecture of the SA is similar to the RT, except that the SR is bidirectional
and some additional simple control logic is introduced to disable over-shifting
and indicate the last iteration. The main difference compared to the previous
concept is that the divisor is shifted instead of the remainder. If the dividend
occupies more bits than the divisor, the divisor is aligned first by left shifting
to meet the dividend’s data length. The shifted divisor is compared with the
dividend, using the existing adder and its CO to test if the result is negative
and alignment is finished. Due to this alignment, a quantity representing
the divisor multiplied by 2, where k is the number of skipped iterations, is
subtracted from the remainder in a single step. Now, the shift direction is
reversed to begin the same add-write-shift process as described by the RT.

The bidirectional SR is implemented by a 3-to-1 multiplexor that realizes
initialize, shift-left, or shift-right operations that can be done in parallel with
writing the remainder. Regarding the critical path, the iterative part is similar
to the RT. The new quotient bit is stored as the MSB of the LW, which implies
that the quotient grows from left to right. Upon completion, the LW contains

198 R. Trummer, P. Zinterhof, R. Trobec

0 I 0011 0000
< 011020000 0111
! + //2’s compl. 11010
DIVISOR <> QUOTIENT | //ICO=1 go 0001

41000000 _ 0111
+ //2’s compl. 10100

| REMAINDER | @){//CW’l 011
.@_@_\2
+ //2’s compl
/ICO=1 410001
2 w 0110 @000
.cngg\.
+ //2’s compl

/ICO=0 1110
3 w 0011 00

Figure 2: Schematic of Self-Aligning divider (left) and demo division
01115/00112 in binary (right). Notation is the same as in Figure 1.

the quotient in reversed order.

The total number of performed iterations, and hence the execution time,
depends exclusively on the input data. Although the SA requires more cycles
in the worst case (a tiny divisor will be shifted a long way left first and then
back all the way) than the RT, the average throughput of the SA is generally
much higher.

3 Improved Division

The main drawback of the previous SA is that it only shifts 1 bit per itera-
tion, independently of the current shift direction. Thus, if the operands differ
largely in their data lengths, many iterations are required for aligning the di-
visor. Due to this, the basic idea was to provide a correctly aligned divisor
at each iteration. In fact, this can be done efficiently by using two logical
shifters modified for this special purpose. A logical shifter that can shift an
n-bit input up to n—1 positions basically consists of n n-to-1 multiplexors and
a common k-to-n decoder, where k = logy n. The decoder is implemented by
an n-bit priority encoder that converts the k-bit shift count to an n-bit 1-hot
selection signal, i.e., all trailing bits after the leading non-zero bit are set to
zero. This selection signal is supplied to the multiplexors that implement ap-
propriate logic wiring and consequently k-bit shifting. The desired behavior of
aligning the divisor correctly at each iteration is achieved by connecting two
such modified logical shifters, one for each direction. Such a combinational

A High-Performance Data-Dependent Hardware Divider 199

REMAINDER DIVISOR 0111 0011
PRIORITY PRIORITY ot 0011
STAGE 1 ENCODER ENCODER y M
0100 0010
LOGICAL 0100
STAGE 2 —> 1 —> 1
SHIFTER 0010
LOGICAL 0011
STAGE 3 — -«— -«—
SHIFTER 0110

PARTIAL ALIGNED 0010 0110
QUOTIENT DIVISOR

Figure 3: Schematic of Aligner (left) and demo with 4-bit operands 01115 and
00115 in binary (right).

unit, called Aligner, provides both, the aligned divisor (AD) and the corre-
sponding partial quotient (PQ), as demonstrated in Figure 3. The Aligner’s
operational sequence can be separated into three stages: (1) convert the input
data to 1-hot signals, (2) generate PQ, and (3) generate AD.

Referring to the right part of Figure 3, again with 4-bit demo operands,
in stage 2, the remainder’s 1-hot signal is shifted right 1 bit according to
the divisor’s 1-hot signal and producing immediately the partial quotient. In
stage 3, the divisor is shifted left 1 bit according to the partial quotient’s 1-hot
signal, producing the aligned divisor. The generated divisor is always aligned
correctly to the remainder regarding data lengths, however, both operands
might contain any possible combination of trailing bits after the leading non-
zero bit. This implies that the AD can be either less, equal, or greater than
the current remainder, which causes an addition overflow in the latter case.
Fortunately, an addition with an AD shifted right by 1 bit can never overflow.
The described concept is integrated in the Direct-Aligning divider (DA) that
uses two adders in parallel, as can be seen in Figure 4. Adder 1 is supplied with
the full n-bit inverted output as second operand, whereas Adder 2 is supplied
with a constant non-zero MSB combined with the n—1 high-order bits of the
inverted output (hard-wired shift-right). The CO signal of Adder 1 is used to
control the two multiplexors. In case the primary addition underflows, Mux
1 selects the result of Adder 2 and Mux 2 selects the shifted right PQ, which
is then or-ed with the current quotient. In the present version of the DA, an
additional comparator is used for determining the last iteration, since this is
the most convenient way and it also keeps the controller simple. Nevertheless,

200 R. Trummer, P. Zinterhof, R. Trobec

DIVISOR |

L o e

ALIGNER
PQ

AD
@)

ADDER 1
{0}

+ Cl

QUOTIENT
T

\:

Figure 4: Schematic of Direct-Aligning divider.

it can be replaced by some more advanced control logic that evaluates the
stopping-specific criteria.

Checking our previous demo, the aligner generates the PQ and AD directly,
as shown in Figure 3. The sum of the AD’s 2’s complement and the remainder,
initialized with the dividend, results in 00013 and CO=1, which implies that
the new remainder is 00012. Because the remainder is less than divisor, the
division is finished. From Figure 4 it also follows that the final quotient is
equal to the PQ, which evaluates to 0010,.

The architecture of the DA looks somewhat strange, and in fact, unusual
compared to other dividers. However, in the theoretical sense, the DA rep-
resents an optimal solution concerning data-dependent divider architectures.
It reduces the process of sequential division to the minimum number of sub-
tractions required for breaking down a given dividend. Although the average
performance could be improved greatly compared to the previous SA, the
overall performance is still insufficient. The main drawback of the DA is that
the adders are connected in series to the Aligner, which largely extends the
critical path delay.

However, in case of the DA we could solve this problem at the cost of
one additional multiplexor and two temporary registers (TR). The resulting
divider, named Hybrid-Aligning divider (HA), is shown in Figure 5. The
underlying concept was to combine the strength of the DA with a distinct
worst-case behavior. Precisely, whenever the operands differ largely in their

A High-Performance Data-Dependent Hardware Divider 201

DIVISOR |

I | I I 0 [n-1:1]
1 0
MUX 3 o

ALIGNER

<

AD PQ
@)

. o
ADDER 1 ADDER 2
cO I Cl CcO I Cl ‘ ’

AD REGISTER QUOTIENT

|

Figure 5: Schematic of Hybrid-Aligning divider.

data lengths, it is definitely more efficient to involve the adders in a short
iterative path, similar to the RT or SA, rather than involving them in the
extended Aligner path. For this purpose, we added two TRs that can perform
a hard-wired shift-right through a multiplexor. These TRs are loaded with the
first AD and PQ as soon as they are available. From this point, the divider
uses the contents of the TRs, which are written, and hence shifted, after each
addition. The CO signal of Adder 1 is used to control Mux 1, similar to
the DA. If the primary addition overflows (CO=1), the controller forces the
quotient to be written before the PQ, hence the current content of the PQ-TR
is or-ed with the quotient. In case the primary addition underflows (CO=0),
the PQ is written first, which implies a shift-right of the PQ-TR before its
content is or-ed with the quotient. The CO signals of both adders are nor-ed
to control Mux 2 and Mux 3 that are used for writing and shifting the two
TRs. The adders are involved in the short critical path using the content of the
AD-TR until the secondary addition also underflows. Whenever this happens,
the TRs are reloaded with the operands provided by the Aligner. This causes
an iteration without obtaining a partial remainder, however, a gap that will
be filled immediately during the next iteration.

Testing our demo again, the calculation is exactly the same as for the DA
in this simple case. Using longer and more complicated operands containing
several zeros would reveal the real advantage of the HD. Due to the extension
proposed, the DA efficiency could be improved significantly. The resulting HA

202 R. Trummer, P. Zinterhof, R. Trobec

clearly dominates over all analyzed dividers in both worst-case and average
performance.

4 Performance Analysis

In order to test the theoretical behavior, we developed synthesizable archi-
tectures of the four discussed dividers. For this purpose, Verilog HDL (Hard-
ware Description Language) in combination with the Xilinx Project Navigator
6.2.03i environment configured for the Spartan xc3s50-5pq208 FPGA (Field-
Programable Gate Array) [5, 15] was used. To gain full control over each
implementation detail and make the synthesis as technology-independent as
possible, we created a set of components based exclusively on RTL (Register
Transfer Level) descriptions. In other words, each component was described
by some structure of basic gates and their connectivity.

The overall performance of the four dividers depends primarily on the
underlying algorithms, since they are fully data-dependent. We found out
that the encompassed logic delays influence the simulation results only by a
linear factor. Thus, to implement just 4 instead of 16 possible implementations
of optimized controllers for different logic delays and different word lengths,
the 64-bit delays were used throughout all simulations, since most related
work is based on the same data. Each individual divider was tested for the
architecture sizes 16, 32, 64, and 128 bits.

The best /worst-case analysis was conducted directly with the Xilinx Model
Simulator XE II 5.7¢g, whereas the average-case analysis required a much more
elaborate method. Obviously, to obtain the average performance one would
merely need to collect all results and calculate the average. Unfortunately,
this is currently only possible for small word lengths, because even for 32-bit
operands the total number of combinations cannot be tested in a meaningful
amount of time. According to this, we developed a C++ parallel program
based on MPI (Message-Passing Interface), which gave us the opportunity to
involve a large number of processors in the simulation [6]. The behavior of
each divider was mapped to a performance function, designed to return the
exact number of required clock cycles for a given pair of operands. During
program execution, the four performance functions were called in subsequent
order with the same operands, which were generated randomly.

The parallel simulation program is based on a master-slave principle, where
the master processor distributes the input parameters (word length, test du-
ration, etc.) among the slave processors and lets each of them run its part of
the simulation independently until all partial results are calculated and gath-
ered in the master processor. Thus, communication time is not crucial. The

A High-Performance Data-Dependent Hardware Divider 203

simulation is based on random numbers generated locally on each processor
using different local seeds equal to the unique processor’s rank. To obtain
results that are not influenced by any exceptional cases, each operand pair
was incremented immediately by 1 to avoid zero-values. In case the dividend
was less than the divisor, the operands were exchanged.

Every data-dependent divider has its own characteristic behavior. Thus,
for evaluating the average performance it is definitely not sufficient to apply
any series of random operands, since the performance of one divider might
be excellent, whereas the performance of another one might be poor, or con-
trary. To cover a large range of possible operand combinations, we developed
a multi-word RNG (Random Number Generator) that allows some variations
regarding the distribution. This RNG was designed to use the processor’s
built-in RNG for generating multi-word random numbers of any desired word
length, based on XOR operations, followed by a random shift-right of the pro-
duced number. Due to this adjustable random shift-right, the distribution of
generated numbers could be varied to enable different simulations. To explore
each divider’s behavior affected by different distributions, we used the follow-
ing four RNG random shift-right ranges: (1) 0,...,n/8—1, (2) 0,...,n/4—1,
(3)0,...,n/2—1,and (4) 0,...,n—1, where n denotes the word length in bits.
We expect that multi-word upgrade and dividend-divisor separation have en-
sured that eventual correlations of pseudo-random sequences cannot affect the
performance results.

5 Obtained Results

The minimum and maximum performance results for all four dividers were ob-
tained through simulations with analytically determined best and worst cases.
Note that the worst case is not always given by dividing the largest repre-
sentable value by the smallest one. The average-case results were obtained by
running the parallel program on a 16-node AMD OPTERON 244 (1.8GHz)
dual processors, connected in a 2-D toroidal 4-mesh by Gb Ethernet, using
MPI library and C++ under Linux Fedora?2.

Against our expectations, the average values converged very fast, usually
within a few million divisions. Nevertheless, a minimum of 35 billion divisions
was executed during each simulation to prove stability. A summary of all con-
ducted measurements is given in Table 2. Note that due to the supplied clock
frequency of 1 GHz, the number of required clock cycles is identical with the
execution time in nano-seconds. It points out that the RT divider covers the
smallest spectrum of all four dividers. This is due to the fact that its execution
time is constant in the original R2 version and the applied shifting-over-zeros

204 R. Trummer, P. Zinterhof, R. Trobec

method could cause only a slight improvement of the average performance,
which is very close to the maximum. The SA stands out from all others with
the widest average spectrum, since it is highly sensitive to strongly varying
distributions. In other words, a sufficient average performance can only be
achieved with operands that do not differ too much in their data lengths. The
DA spans the largest spectrum due its very long iterative path. However, its
average spectrum is much smaller and lower compared to the SA. The HA
stands out from the others with the smallest and lowest average spectrum. In
this sense, it is least sensitive concerning strong variations of input data.

16-bit Performance [clock cycles]
Divider | Minimum | RNG 1 | RNG 2 | RNG 3 | RNG 4 [Maximum

RT 58 150 145 135 116 163
SA 23 57 64 81 116 270
DA 26 34 37 47 68 311
HA 26 30 33 39 52 161

32-bit Performance [clock cycles]

Divider | Minimum | RNG 1 [RNG 2 [RNG 3 | RNG 4 | Maximum

RT 106 305 295 275 238 323
SA 23 64 82 122 205 534
DA 26 37 47 71 118 615
HA 26 33 39 56 89 315

64-bit Performance [clock cycles]

Divider H Minimum ‘ RNG 1 ‘ RNG 2 ‘ RNG 3 ‘ RNG 4 ‘ Maximum

RT 202 615 595 558 483 643
SA 23 82 122 209 382 1062
DA 26 47 71 120 219 1223
HA 26 39 56 92 163 635

128-bit Performance [clock cycles]

Divider [| Minimum | RNG 1 [RNG 2 [RNG 3 | RNG 4 | Maximum

RT 394 1235 1198 1123 973 1283
SA 23 122 209 384 734 2118
DA 26 71 120 221 422 2439
HA 26 o6 92 166 311 1275

Table 2: Measured performance of four dividers in number of clock cycles.

A High-Performance Data-Dependent Hardware Divider 205

Finally, Table 3 summarizes the average speedups resulting from compar-
isons against the constant execution times of the R2, which are equal to the
maxima of the RT. Each entry was determined by dividing the RT maximum
by the average of the four obtained simulation values RNG 1 through RNG 4
from Table 2.

Average Speedup
Divider | 16 bit | 32Dbit | 64bit [128 bit

RT 1.2 1.2 1.1 1.1
SA 2.1 2.7 3.2 3.5
DA 3.5 4.7 5.6 6.2
HA 4.2 6.0 7.3 8.2

Table 3: Average speedup of four dividers compared to R2.

6 Conclusions

We have discussed the basic principles and two fundamental concepts of se-
quential division. We have further introduced the Direct- and Hybrid-Aligning
divider, which represent two possible implementations of the proposed Aligner
concept and might serve as inspiration for more sophisticated designs. In our
effort to improve the efficiency of data-dependent dividers, we have developed
an elaborate method that offers an average speedup of 600%. The underlying
architecture is fully scalable, and therefore, might become attractive compared
to other divider architectures that can only be scaled to some extend.

Different designs of the Aligner applied to both existing an new divider
architectures are expected to be investigated in the future. Another important
goal is to determine more accurate and technology-specific performance data
based on fully optimized implementations.

References

[1] David A. Patterson and John L. Hennessy, Computer Organization &
Design, 2nd ed., Morgan Kaufmann, San Francisco, California, 1998.

[2] John L. Hennessy and David A. Patterson, Computer Architecture—A
Quantitative Approach, 2nd ed., Morgan Kaufmann, San Francisco, Cal-
ifornia, 1996.

206

3]

R. Trummer, P. Zinterhof, R. Trobec

Israel Koren, Computer Arithmetic Algorithms, 2nd ed., A K Peters, Nat-
ick, Massachusetts, 2002.

Mi Lu, Arithmetic and Logic in Computer Systems, Wiley-Interscience,
Hoboken, New Jersey, 2004.

Michael D. Ciletti, Advanced Digital Design with the Verilog HDL, Pren-
tice Hall, Upper Saddle River, New Jersey, 2003.

Ian T. Foster, Designing and Building Parallel Programs, Addison-Wesley,
1995.

Michael J. Flynn and Stuart F. Oberman, Advanced Computer Arithmetic
Design, Wiley-Interscience, New York, New York, 2001.

Alan Daly, William Marnane, Tim Kerins, and Emanuel Popovici, Fast
Modular Division for Application in ECC on Reconfigurable Logic, Proc.
of the 13th International Conference on Field-Programmable Logic and
Applications (2003).

A. De Vora, M. Ley, E. Ofner, and H. Griinbacher, A High-Speed Radiz
4 Hardware Divider For ASIC’s, Tagungsband Mikroelektronik (2003).

David L. Harris, Stuart F. Oberman, and Mark A. Horowitz, SRT Divi-
sion Architectures and Implementations, IEEE Symposium on Computer
Arithmetic (1997).

David W. Matula and Alex Fit-Florea, Prescaled Integer Division, IEEE
Symposium on Computer Arithmetic (2003).

James E. Stine and Michael J. Schulte, A Combined Interval and Floating-
Point Divider, Proceedings of the 32nd Asilomar Conference on Signals,
Systems, and Computers (1998).

H. P. Sharangpani and M. L. Barton, Statistical Analysis of Floating Point
Flaw in the Pentium Processor, Technical Report (1994).

Robert Uang, Christian Bourdé, and Tim Bagwell, A SiGe 23 GH:z
Fractional-N Frequency Synthesizer, Technical Report (2004).

Roman Lysecky and Frank Vahid, A Study of the Speedups and
Competitiveness of FPGA Soft Processor Cores using Dynamic Hard-
ware/Software Partitioning, Proceedings of the Design, Automation and
Test, Volume 1 (2005).

