
Parallel Numerics '05, 119-125 M. Vajter²ic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)
Chapter 5: Optimization and Classi�cation ISBN 961-6303-67-8

Reimplementation of the Random

Forest Algorithm

Goran Topi¢∗, Tomislav �muc, Zorislav �ojat, Karolj Skala∗

Ru�er Bo²kovi¢ Institute
Bijeni£ka 54, 10000 Zagreb, Croatia

The random forests algorithm is one of the more versatile data classi-
�cation algorithms currently known to data mining community. It can
classify huge amounts of data, with large number of attributes. Unfor-
tunately, it was originally written in Fortran 77, a cumbersome language
not suited for structured programming, and without any support for par-
allel execution. However, the algorithm itself is very well suited to par-
allelisation � the random forest consists of random decision trees, which
can be generated (and evaluated) quite independently. Therefore, we
have undertaken to reimplement the algorithm in a higher programming
language, and to allow it to run in a cluster environment. To keep the
algorithm accessible to the mathematicians we decided to stick to For-
tran, but Fortran 90 � a structured programming language with many
features that were missing in the earlier standard.

1 Introduction

The random forest algorithm is one of the more versatile data classi�cation
algorithms currently known to data mining community. It can work on big
datasets, with large number of attributes; it can provide many other incidental
pieces of information about the dataset besides the class tags; and, it is loosely
coupled, and can be easily parallelised.

Unfortunately, it was originally written in Fortran 77, a cumbersome lan-
guage not suited for structured programming, and without any support for
parallel execution. Fortran was chosen because it is traditionally employed
in the mathematician circles, being well suited to expressing numerical and

∗Corresponding author. E-mail: goran.topic@irb.hr
∗Corresponding author. E-mail: skala@irb.hr



120 G. Topi¢, T. �muc, Z. �ojat, K. Skala

computational processes � and the 77 standard because at the time only com-
mercial compilers handled the newer Fortran speci�cations. However, it is very
hard to understand the code, even when the algorithm is known, because of the
language limitations � the most notable of which being the lack of composite
types, recursion and dynamic allocation. Also, the very strict source code for-
mat speci�cation does not facilitate legibility. To make the matters worse, the
code was written in a very concise, mathematical style, with terse and insu�-
ciently descriptive variable names � coupled with the sheer number of variables
used in the program, and the general scarcity of comments, there was very lit-
tle possibility for the program to serve as an illustration of the algorithm, for
those who wished to gain �rst-hand knowledge of it by directly studying the
implementation. Furthermore, Fortran 77 does not provide the functionalities
that would enable a comfortable user interface, and certain matters (like for-
matted input and output) were sacri�ced for speed of execution and simplicity
of code. Consequently, the original implementation's source code needed to be
edited and recompiled for each run, and the input and output data were not
legible by humans, and thus needed additional processing.

For these three reasons � sequentialism, illegibility and user-unfriendliness
� we have decided to reimplement the algorithm to alleviate these problems.
We have chosen to do so using Fortran 90. In this way, the code remains
close to the mathematics community, and on the other hand it can be written
in a structured way. Also, we shall enable parallelism, incorporate dynamic
allocation (removing the need for de�ning the data dimensions within the code)
and implement a better user interface.

2 Description of the algorithm

To brie�y describe the algorithm: the random forests are based on decision
trees. We take a seed � so to speak � from the training dataset by pulling out
at random a collection of samples (the bootstrap). A random set of attributes
is then chosen. The attribute from this set that can create the best possible
split is selected, as well as the value criterion that yields this split, and the
samples are separated into the �yes� branch and the �no� branch. The process
repeats for each of the branches, until our �seed� grows into a proper tree �
the termination condition stating that leaves are the nodes that are either too
small to split, homogeneous, or where no splitting criterion can be found in
the set of the randomly chosen attributes. One tree by itself is thus incomplete
� only a part of the dataset participates in the tree growth, and many of the
nodes are split by a suboptimal criterion, simply because not all attributes
are considered. However, grow ten of them, or a hundred, and the situation



Reimplementation of the Random Forest Algorithm 121

changes. When the forest is employed in classi�cation, each tree casts votes,
assigning a class to each sample, and the votes generally di�er from tree to
tree. If we poll the results, the class that received the most votes �wins�.

The classi�cation is very easy and quick, but still it might be desirable
to distribute it for extremely large datasets. Each tree makes the decision by
itself � the only interaction is the �nal counting of the votes for each of the
samples.

However, the more interesting part of the problem is the �cultivation� of the
forest. Growing a tree is rather costly, in both processor time and memory,
since a large number of split possibilities need to be examined to �nd the
best one � but it is noteworthy that a tree is grown in isolation, too. From
the moment we pick the bootstrap, the �seed�, until the tree is �mature�, no
communication or interaction of any kind is necessary. We can thus hire as
many worker processes as we are to have trees, and assign each worker a seed
to tend to. They shall report back to the overseer when their tree is fully
grown.

In this way the whole forest grows simultaneously, and the only commu-
nication is passing the training data to the workers, and collecting the trees
back to the controlling process if necessary.

3 Implementation

3.1 Coding

The implementation was split into modules, which are the closest one can get
to the concept of an �object class� in Fortran.

The module instancesets de�nes a set of instances, whether from a training
dataset or testing dataset. It contains a routine that loads the data from an
ARFF �le, and a matching routine to write it out in the same format. The
ARFF speci�cation was slightly modi�ed for this program � date types are not
supported, integers are treated either as a numeric or as category values, and
class weights are supported, to name the most important changes.

The module bootstraps de�nes a data structure that holds a bootstrap
sample collection.

The module trees de�nes a single tree as a recursive composite type, and
provides the methods to build a tree and to classify data on it, as well as basic
input and output operations.

The module forests brings together a collection of trees, and enables the
saving and loading of whole forests. It also has methods for data classi�cation,
and it orchestrates the tree building � and it is here where the coordination of
worker processes happens.



122 G. Topi¢, T. �muc, Z. �ojat, K. Skala

In addition to these modules that implement the random forests algorithm
itself, there are several other supporting modules. The module bitvectors im-
plements packed arrays of logical values. Besides the obvious reason of memory
conservation, a bitvector can be easily and quickly incremented, as well as ran-
domised � two operations necessary for the generation of the combinations of
categories used in searching for the best split on category values.

The module options parses the command line options given by the user,
and puts them in a globally accessible structure where all other modules can
straightforwardly access them.

There is also the module compatibility, done in several variants � one for
each supported compiler, collecting the implementations for functions that are
non-standard and compiler-dependent, to allow the code to be used on several
popular compilers.

3.2 Parallelisation issues

The algorithm has two distinct phases, training and classi�cation. Classi�ca-
tion is very fast, algorithmically extremely simple, and would not bene�t from
parallel execution. However, depending on the data set, the training phase can
last from seconds to hours or more. The exact execution time is a function of
many parameters, both those speci�ed on the command line (e.g. number of
trees to grow, number of missing value �ll iterations, etc.) and those inherent
in the data set (such as the number of instances, the number of attributes, the
number of categorical attributes and their ranges and the distribution of the
continuous attributes).

This process can be readily parallelised in two ways. The �rst one is trivial,
and was already described in the Introduction: assign the trees to workers, and
grow the forest in parallel. In actuality it is not practical to have a worker for
each tree, but rather for each processor we have available for computation.
Thus each worker sequentially grows its share of trees, and �subforests� grow
in parallel.

The second way is the parameter sweep option. The forest construction
has several parameters that in�uence the prediction accuracy (primarily the
number of random attribute picks to test at each node); however, the optimal
values cannot be determined a priori. To avoid the manual �ddling with the
parameter values, one could in parallel construct several whole forests, each
with a di�erent parameter value, then automatically pick the one that yields
the least number of misclassi�ed instances.



Reimplementation of the Random Forest Algorithm 123

3.3 Speed-up estimation

At this moment the code is still under development and parallelization per-
formance and bene�ts could only be estimated indirectly. We have set up an
experiment to measure the speed-up of calculations in a most simple form of
parallelisation, i.e. partitioning of the forest to p nodes. We have produced two
sets of classi�cation problems, �rst with only categoric variables and second
with only numeric variables. Details of this sets are given in Table 1.

Table 1: Properties of datasets used for sequential calculations and speed-up
estimation. It is important to notice that categorical set has 50 variables with
20 categories each. All datasets were randomly generated.

Dataset No. of variables No. of classes No. of samples
10k 50 5 10000
20k 50 5 20000
50k 50 5 50000
100k 50 5 100000
200k 50 5 200000

Figure 1: Speed-up for datasets with numeric variables.

Experimental runs of the new implementation of Random Forests algorithm
were performed on a mini-cluster of four, two 64-bit processor machines (2.8
GHz) under Linux operating system, mutually connected via 1Gb ethernet.
We have estimated realistic bandwidth of the local connection experimenting



124 G. Topi¢, T. �muc, Z. �ojat, K. Skala

Figure 2: Speed-up for datasets with categorical variables.

with sending varible packets of the size between 1MB � 256MB. An average
of 25MB/sec was used in our speed-up estimate. In this calculations we have
added other computations (such as parsing, sorting) into a sequential over-
head of the parallel estimate. Figures 1 and 2 depict speed-up estimates for
numerical datasets and categorical ones. It is important to emphasize that
performance between the two cannot be directly compared, since di�erent op-
tion regarding the minimumu split node size of the tree was used for these two
instances. For numerical datasets we have used minimum size of the split node
to be 0.1 percent of the number of samples, while for the categorical datasets,
�xed absolute size (10) was used. The reason for this is that performance in
growing the tree with categoricals is much higher if higher values for the min-
imum size of the split node are used. In that case speed-up would grow slower
than shown in Figure 2.

Real problems are usually a mixture of the two types of varible sets used
in this experiment. This means that each new problem would have its own
speed-up properties. However, it is clear that even for relatively modest sizes
of datasets (20-50000 samples), time savings from parallelization of Random
Forests are considerable. They will be even more pronounced in the case
of parameter sweep, since in that case forests are grown in parallel rather
than parts of the forest, while the communication overhead is not changed
signi�cantly.



Reimplementation of the Random Forest Algorithm 125

4 Summary

This article summarizes current state of the new implementation of the Ran-
dom Forests algorithm. Most of the important changes to the original code are
related to coding and design: use of Fortran 90 standard, use of OOP concepts,
adressing portability issues, constant testing and code optimization. Reasons
for the parallelization of the code are explained, and an estimate computational
savings are roughly estimated on a set of calculations using current version of
the code.

References

[1] L. Breiman, Random Forests, Machine Learning (2001), 45, 5-32.

[2] L. Breiman and A. Cutler, Random Forests (2004), http://stat-
www.berkeley.edu/users/breiman/RandomForests/cc_home.htm

[3] A. Gramma, A. Gupta, G. Karypis and V. Kumar, Introduction to Parallel

Computing, Pearson Education Ltd.,(2003).




