
Parallel Numerics ’05, 129-139 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)

Chapter 6: Multimedia ISBN 961-6303-67-8

Limitations of Cluster Computing
in a Communication Intensive

Multimedia Application

Florian Tischler, Andreas Uhl ∗

Salzburg University, Department of Scientific Computing
Jakob Haringer-Str. 2, A-5020 Salzburg, Austria

http://www.scicomp.sbg.ac.at/

Block-Matching motion compensation is one of the key technologies in
current video coding standards and requires about 70% of the overall
execution time. Therefore, parallelization of video coding always involves
parallelization of block-matching motion compensation. In this work we
use this communication intensive application to show the limitations of
cluster computing as compared to shared memory architectures.

1 Introduction

The widespread use of digital video in various environments has caused a high
demand for efficient compression techniques. Unfortunately, many compres-
sion algorithms have prohibitive execution times using a single serial micropro-
cessor [1], which leads to the use of high performance computing systems for
such tasks. Software based approaches are becoming more popular in this area
because of the rapid evolution of multimedia techniques which has dramati-
cally shortened the time available to come up with a new hardware design for
each improved standard. In this context, several papers have been published
describing real-time video coding on general purpose parallel architectures –
see for example MPEG-1,2,4 [2, 3, 4], H.261/3/L [5, 6, 7], and wavelet-based
video compression [8, 9, 10].

Block-matching motion compensation is the most demanding part of cur-
rent video coding standards and requires 60 – 80 % of the total computa-
tions involved. A significant amount of work discusses dedicated hardware for

∗Corresponding author. E-mail: uhl@cosy.sbg.ac.at



130 F. Tischler, A. Uhl

block-matching (e.g. [11]), some software based block-matching approaches
have also been investigated [12]. However, in most cases, only one approach
(in particular one parallelization granularity) is discussed in detail and it is
left to the reader to compare the results to other research in this area. In
recent work [13], we have systematically compared different levels of paral-
lelization granularity from the scalability point of view, we have investigated
special communication patterns for these algorithms [14], and we have also
proposed to switch among granularities in a dynamic way [15]. We have as
well compared these different granularity levels in the context of a complete
wavelet packet based parallel video codec [16].

In this work, parallel block-matching algorithms with different granularities
are used as example application with high communication demand in order
to assess the effectiveness of cluster computing for this scenario. In section 2
we shortly review block-matching motion compensation in the video coding
context. Section 3 discusses three granularity levels for parallel block-matching
which are experimentally evaluated on three architectures using MPI based
message passing. In section 4 we review the concept of switching granularities
and provide experimental results to show the performance problems of the
cluster implementation.

2 Block-Matching Motion Compensation in Video
Coding

The main idea of motion compensated video coding is to use the temporal and
spatial correlation between frames in a video sequence (Fig. 1) for predicting
the current frame from previously (de)coded ones. Since this prediction fails
in some regions (e.g., due to occlusion), the residual between this prediction
and the current frame being processed is computed and additionally stored
after lossy compression.

Because of its simplicity and effectiveness block-matching algorithms are
widely used to remove temporal correlation [17]. In block-matching motion
compensation, the scene (i.e. video frame) is classically divided into non-
overlapping “block” regions. For estimating the motion, each block in the
current frame is compared against the blocks in the search area in the refer-
ence frame (i.e. previously encoded and subsequently decoded frame) and the
motion vector (d1, d2) corresponding to the best match is returned (see Fig.
2). The “best” match of the blocks is identified to be that match giving the



Limitations of Cluster Computing 131

tim
e -

 ax
is

x - axis

y 
- 

ax
is

time delay
Consecutive frames in time

Figure 1: Frame-structure of video (football sequence)

minimum mean square error (MSE) of all blocks in search area defined as

MSE(d1, d2) =
1

N1N2

∑
(n1,n2)∈B

[sk(n1, n2)− ŝk−l(n1 + d1, n2 + d2)]
2

where B denotes a N1 ∗N2 block for a set of candidate motion vectors (d1, d2),
s is the current frame and ŝ the reference frame. Note that that (d1, d2)
classically is restricted to integer pixel locations, however, it has turned out
that an increase in accuracy to sub-pixel values (e.g. quater pixel) is able to
increase prediction quality considerably.

search area

block B(d1,d2)

reference frame current frame

Figure 2: Block-matching motion estimation

The algorithm which visits all blocks in the search area to compute the
minimum is called full search (FS). In order to speed up the search process,
many techniques have been proposed to reduce the number of candidate blocks.
The main idea is to introduce a specific search pattern which is recursively ap-
plied at the position of the minimal local error. The most popular algorithm



132 F. Tischler, A. Uhl

of this type is called “Three Step Search” (TSS) which reduces the computa-
tional amount significantly at the cost of a suboptimal solution (and therefore
a residual with slightly more energy). In particular, a search pattern is applied
in three recursions at the position of the lowest local error [17].

3 Granularity of Parallel Block-matching Algorithms

In general, granularity determines important characteristics of a parallelization
approach. A coarse grained parallelization usually requires little communica-
tion, on the other hand, balanced load may be hard to achieve. Independent
of the results corresponding to parallelization efficiency, granularity has also
major impact with respect to hardware requirements and coding delay of a
video compression system.

Examing the sequence of frames in the video stream to be encoded, we
identify two main granularity levels: intra-frame granularity (fine grained par-
allelization) and inter-frame granularity (coarse grained parallelization).

As described in the previous section, the current frame and the refer-
ence frame are segmented into equal sized blocks. Based on this partitioning,
two intra-frame granularities may be used (fine grained parallelization). In
the Blockbased parallelization (BB) approach, the blocks of the current frame
are distributed among the processing elements (PE), the computation of the
motion vector for each block is done locally. To avoid interprocess commu-
nication, the entire search area surrounding the corresponding block in the
reference frame (see Fig. 3.a) is sent to the PE in charge of the current block
resulting in an overlapping data partition.

PE y PE zPE x

(a) BB

global processor
decomposition

local
copies

P1 P2 P3 P4

(b) IF

PI P P P P P P I P P P P P P P I P

P2P1 P3 P4 P5 P6 P1 P2 P3 P4 P5 P6 P1 P3 P4 P5 P6P2

Group of Pictures Group of Pictures

t

(c) GOP

Figure 3: Partitioning schemes with different granularities

Another way of partitioning the current frame among the PE is the stripe
subimage method (see [12] for a comparison of several flavours of this method)
which we denote Intra Frame parallelization (IF). Using this method, the



Limitations of Cluster Computing 133

current frame is split into horizontal or vertical stripes as shown in Fig. 3.b and
the computations associated with the blocks contained in one contiguous stripe
are assigned to one PE. Again, a search-overlap is used to avoid interprocess
communication among the PEs.

To preserve the quality reached by the sequential version, the smallest al-
lowed unit for splitting the frame is limited by the blocksize. These units are
combined according to the number of PEs to form stripes as uniformly sized
as possible. Therefore, this method should perform well especially in the case
where the units can be distributed evenly among the compute nodes. Addi-
tionally, two types of inter-frame granularity (coarse grained parallelization)
may be considered. A group of pictures (GOP) is a collection of P-frames
(predicted frames) which are all processed in relation to one reference frame,
the I-frame. An obvious way to distribute the block-matching computations is
to assign entire frames to single PEs. Fig. 3.c illustrates this technique which
is denoted GOP parallelization. A second possibility is to assign complete
GOPs to single PEs (denoted eGOP).

It is obvious that the lower communication demand (in terms of the number
of messsages to be exchanged) of inter-frame granularity has to be paid with
higher memory consumption and a possibly higher coding delay [13]. Conse-
quently, coarse grained parallelization (GOP and eGOP) will not be suited for
real-time and on-line applications like video conferencing, since especially the
high coding delay is not acceptable for these types of applications. Addition-
ally, the high memory requirements lead to high costs (especially for hardware
solutions) and poor cache performance. Note that the eGOP approach is not
investigated further since coding delay and memory requirements are too high
for practical systems. Moreover, load imbalance is significant for short videos
using this technique.

3.1 Experiments

All simulations use the standard test sequence “Football” in QCIF (quarter
common intermediate format), having a size of 176×144 pixels. The blocksize
is set to 8x8, motion vectors may point 7 pixels in each direction, the compu-
tations are performed on 40 successive frames of the sequence. Unless denoted
otherwise, three step search (TSS) is employed for computing motion vectors.
Three different architectures using native MPI versions are employed: a SGI
Power Challenge (20 MIPS R10000 processors and 2.5 GB memory), a Cray
T3E (DEC Alpha EV5 processors, 128 MB memory each, interconnected by
a 3D torus with 3 GB/s bandwidth in each network node), and a Siemens
HPCline cluster (compute nodes with 2 Pentium III @ 850 MHz and 512 MB
memory each, interconnected by a 2D torus with 500 MB/s bandwidth in



134 F. Tischler, A. Uhl

each network node). Note that the three systems have opposite properties.
Whereas the SGI has the slowest compute nodes and the cluster the fastest,
the communication system is fastest on the SGI (shared memory) and slowest
on the cluster (see above). Therefore, we may expect the best result with re-
spect to scalability on the SGI and the worst results on the cluster, the Cray is
expected to perform in-between. SPMD-style programming with non-blocking
MPI communication commands is used.

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - Ganesh - Comparison Three Step Search

GOP
Intra Frame
Blockbased

(a) SGI

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - Cray - Comparison Three Step Search

GOP
Intra Frame
Blockbased

(b) Cray

Figure 4: Speedup results of parallel block-matching (TSS).

Figure 4 shows that block-based parallelization does not show satisfactory
speedup, neither on the SGI nor on the Cray. The communication demand is
too high to deliver reasonable results, even though the load may be balanced
perfectly. Note that this contrasts to the results if FS is employed as motion
vector search algorithm [13], where at least on the SGI reasonalble results
are obtained. Intra Frame parallelization performs better but exhibits several
plateaus in the speedup plots. These plateaus are due to the unequal distribu-
tion of the limited number of stripes in each frame among the PEs. See [13] for
detailed explanations of this phenomenon. The overall performance of GOP
parallelization is the best compared to the other two approaches. Also, GOP
parallelization leads to plateaus in the speedup plots. The reason for these
plateaus is that a fixed number of frames can not be distributed evenly among
an arbitrary number of PEs, therefore several PEs may remain idle when the
last frames are processed. Note, that these plateaus disappear for long video
sequences since unbalanced load in the last scheduling round is not important
for a large number of scheduling rounds. This is not the case for Intra Frame
parallelization since these plateaus appear on a per frame basis and can only
be avoided by skipping synchronization at the frame level, which is difficult



Limitations of Cluster Computing 135

from the application point of view and reduces the corresponding advantages
of this approach. When comparing the two architectures, the performance
matches exactly the prediction. Reasonable performance is achieved on the
Cray and the SGI using GOP and Intra Frame parallelization, the results on
the SGI are slightly better due to the faster “communication” (exploiting the
shared memory).

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - psc2 - Comparison Three Step Search

GOP
Intra Frame
Blockbased

(a) TSS

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - psc2 - Comparison Full Search

GOP
Intra Frame
Blockbased

(b) FS

Figure 5: Speedup results of parallel block-matching on the cluster.

Turning to the Cluster implementation, the results differ dramatically (Fig.
5). None of the three granularity levels is able to produce any reasonable
speedup. When considering block-matching with the full search (FS) algo-
rithm for motion vector computation the results are slightly better but far
from being satisfactory (see Fig. 5.b). As a matter of fact, the Cluster archi-
tecture turns out to be of no use for this communication intensive algorithm.

4 Hybrid Granularity in Parallel Block-Matching

Due to its good efficiency, the GOP parallelization approach is an interesting
candidate for video compression applications and other applications where
large quantities of still image data need to be compressed. As we have noted,
due to its high coding delay and memory demand it is not suited for on-line
applications. However, for off-line applications where large amounts of data
need to be processed in reasonable time, coding delay and memory demand
are not critical issues. For example, we mention large surveillance systems
and all types of storage applications in general. In an environment where
long videos are processed (e.g. for insertion into a video-on-demand server)



136 F. Tischler, A. Uhl

the load-imbalance phenomenon as discussed in the previous section does not
pose any problem. However, in case of many short video sequences to be
compressed this behaviour degrades execution efficiency significantly. Coming
back to a surveillance application as an example, this would be the case if
the video cameras only record if triggered by a sensor measurement, e.g. an
infrared sensor. Here, many short videos are delivered to the storage system
and need to be compressed as fast as possible. The aim of this section is to
introduce a methodology to improve the efficiency of the GOP parallelization
approach in such an environment.

Since the load-balancing problems are intrinsic to the GOP approach and
both other approaches show limited scalability, we propose to extend the GOP
approach in a way where we can keep its good efficiency and incorporate the
good load-balancing facilities of the other two schemes (see [15] for more details
and comprehensive results).

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - Ganesh - Comparison Three Step Search

GOP
GOP & Intra Frame
GOP & Blockbased

(a) SGI

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - psc2 - Comparison Three Step Search

GOP
GOP & Intra Frame
GOP & Blockbased

(b) Cluster

Figure 6: Speedup results of the hybrid granularity modes (TSS).

In particular we suggest to start the computations according to the GOP
parallelization and switch to a finer granularity as soon as the efficiency of
the first scheme degrades. Note that switching granularity implies a data
redistribution procedure which is costly in terms of communication and syn-
chronization demand. Of course, the location of the granularity switch needs
to be determined in advance (i.e. to avoid a performance degradation) and
should not react to an already poor behaviour. The GOP approach is re-
stricted to a number of frames which is an integer multiple of the number of
PEs. Frames exceeding this set are processed according to an approach with
finer granularity (BB or IF) and the data are distributed accordingly.

Fig. 6 shows the speedup results of this approach on the SGI and the



Limitations of Cluster Computing 137

Cluster, respectively. Contrasting to the results in [15] for FS, even on the
SGI the hybrid granularity algorithms may improve the GOP results only for
few selected parameters (i.e. GOP is improved by GOP+IF with 12, 17, and
18 PEs), in most cases the results are worse. Again we face dramatically poor
results for the Cluster where almost no speedup is produced across the entire
range of PEs (see Fig. 6.b). Finally when considering again the results for
FS on the cluster (Fig. 7), we notice some speedup but both types of hybrid
algorithms decrease the performance of the GOP algorithm due to the poor
performance of the intra frame granularities at the end of the computations.

5 Conclusion

We have selected a communi-

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20 22

S
pe

ed
up

#PE

Speedup - psc2 - Comparison Full Search

GOP
GOP & Intra Frame
GOP & Blockbased

Figure 7: Speedup results of the hybrid
granularity modes on the Cluster (FS).

cation intensive multimedia ap-
plication for showing the limita-
tions of cluster computing em-
ploying the message passing para-
digm using MPI – parallel block
matching motion compensation
of QCIF video sequences employ-
ing TSS as well as FS as mo-
tion vector search algorithms can
not be performed in a reasonable
way on a cluster whereas accept-
able results with respect to scal-
ability are obtained on shared memory and dedicated HPC architectures with
high bandwidth interconnections.

Acknowledgements

The authors have been partially supported by the Austrian Science Fund
FWF, project no. P13903.

References

[1] K. Shen, G.W. Cook, L.H. Jamieson, and E.J. Delp. An overview of paral-
lel processing approaches to image and video compression. In M. Rabbani,
editor, Image and Video Compression, volume 2186 of SPIE Proceedings,
pages 197–208, 1994.



138 F. Tischler, A. Uhl

[2] S.M. Akramullah, I. Ahmad, and M.L. Liou. Performance of software-
based MPEG-2 video encoder on parallel and distributed systems. IEEE
Transactions on Circuits and Systems for Video Technology, 7(4):687–
695, 1997.

[3] Y. He, I. Ahmad, and M.L. Liou. Modeling and scheduling for MPEG-
4 based video encoder using a cluster of workstations. In P. Zinterhof,
M. Vajtersic, and A. Uhl, editors, Parallel Computation. Proceedings of
ACPC’99, volume 1557 of Lecture Notes on Computer Science, pages
306–316. Springer-Verlag, 1999.

[4] K. Shen, L.A. Rowe, and E.J. Delp. A parallel implementation of an
MPEG1 encoder: faster than real-time ! In A.A. Rodriguez, R.J.
Safranek, and E.J. Delp, editors, Digital Video Compression: Algorithms
and Technologies, volume 2419 of SPIE Proceedings, pages 407–418, 1995.

[5] J. C. Fernandez and M. P. Malumbres. A parallel implemenatation of
H.26L video encoder. In B. Monien and R. Feldmann, editors, Parallel
Processing. Proceedings of EuroPar’02, volume 2400 of Lecture Notes on
Computer Science, pages 830–833. Springer-Verlag, 2002.

[6] K.K. Leung, N.H.C. Yung, and P.Y.S. Cheung. Parallelization method-
ology for video coding – an implementation on the TMS320C80. IEEE
Transactions on Circuits and Systems for Video Technology, 8(10):1413–
1423, 2000.

[7] N.H.C. Yung and K.K. Leung. Parallelization of the H.261 video cod-
ing algorithm on the IBM SP2 multiprocessor system. In Proceedings
of the IEEE International Conference on Algorithms, Architectures, and
Applications for Parallel Processing, pages 571–578. North Holland, 1997.

[8] M. Feil and A. Uhl. Efficient wavelet-based video coding. In Proceed-
ings of the 16th International Parallel and Distributed Processing Sym-
posium IPDPS’02 (Abstracts and CD-ROM), PDIVM 2002, page 128.
IEEE Computer Society Press, 2002.

[9] M. Feil and A. Uhl. Motion-compensated wavelet packet zerotree video
coding on multicomputers. Journal of Systems Architecture, 49:75–87,
2003.

[10] R. Kutil. Approaches to zerotree image and video coding on MIMD
architectures. Parallel Computing, 28(7–8):1095–1109, August 2002.



Limitations of Cluster Computing 139

[11] S.-C. Cheng and H.-M. Hang. A comparison of block-matching algorithms
mapped to systolic-array implementation. IEEE Transactions on Circuits
and Systems for Video Technology, 7(5):741–757, October 1997.

[12] M. Tan, J. M. Siegel, and H. J. Siegel. Parallel implementation of
block-based motion vector estimation for video compression on four par-
allel processing systems. Internaltional Journal of Parallel Programming,
27(3):195–225, 1999.

[13] F. Tischler and A. Uhl. Granularity levels in parallel block-matching mo-
tion compensation. In D. Kranzlmüller, P. Kacsuk, J. Dongarra, and
J. Volkert, editors, Recent advances in Parallel Virtual Machine and
Message Passing Interface (EuroPVM/MPI) - 9th European PVM/MPI
Users Group Meeting, volume 2474 of Lecture Notes on Computer Sci-
ence, pages 183 – 190. Springer-Verlag, September 2002.

[14] F. Tischler and A. Uhl. Communication patterns in MPI-based parallel
block-matching. In R. Trobec, P. Zinterhof, M. Vajteršic, and A. Uhl,
editors, Parallel Numerics ’02 – Theory and Applications (Proceedings
of the International Workshop), pages 211–220, Bled, Slovenia, October
2002.

[15] F. Tischler and A. Uhl. Dynamic granularity switching in parallel block-
matching motion compensation. In M. Danelutto, D. Laforenza, and
M. Vanneschi, editors, Parallel Processing. Proceedings of EuroPar’04,
volume 3149 of Lecture Notes on Computer Science, pages 768–775.
Springer-Verlag, September 2004.

[16] M. Feil and A. Uhl. ParWave: Granularity in parallel wavelet packet
video coding. In E. Krause and W. Jäger, editors, High Performance
Computing in Science and Engineering 2002, pages 479–490, Stuttgart,
Germany, 2002. Springer-Verlag.

[17] B. Furht, J. Greenberg, and R. Westwater. Motion estimation algorithms
for video compression. Kluwer Academic Publishers Group, Norwell, MA,
USA, and Dordrecht, The Netherlands, 1997.




