The Myth of Universal Computation

Selim G. Akl *

School of Computing Queen's University Kingston, Ontario, Canada K7L 3N6

It is shown that the concept of a Universal Computer cannot be realized. Specifically, instances of a computable function \mathcal{F} are exhibited that cannot be computed on any machine \mathcal{U} that is capable of only a finite and fixed number of operations per step. This remains true even if the machine \mathcal{U} is endowed with an infinite memory and the ability to communicate with the outside world while it is attempting to compute \mathcal{F} . It also remains true if, in addition, \mathcal{U} is given an indefinite amount of time to compute \mathcal{F} . This result applies not only to idealized models of computation, such as the Turing Machine and the like, but also to all known general-purpose computers, including existing conventional computers, as well as contemplated ones such as quantum computers.

^{*}Corresponding author. E-mail: akl@cs.queensu.ca

This research was supported by the Natural Sciences and Engineering Research Council of Canada.