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Partial differential equations have traditionally been solved by finite dif-
ference or finite element methods. The new mesh free methods combine
the advantages of both, not requiring a mesh of elements while providing
better accuracy than finite differences. The accuracy results from using
weak formulation of the equation where the solution is approximated by
a set of base functions defined on local support domains. In this paper
a mesh free method is illustrated on the one dimensional diffusion equa-
tion. The methodology of deriving a system of algebraic equations from
the weak formulation of the differential equation is given. Paralleliza-
tion potentials and advantages of mesh free methods are discussed, in
particular for applications where the domain shape changes with time.

1 Introduction

Physical phenomena and different engineering problems modeled by partial
differential equations (PDE) have traditionally been solved by finite differences
(FDM) or finite elements (FEM). Both methods are based on a set of points
that are positioned in the problem domain and connected into a mesh. While
FDM is based on approximating the derivatives in PDE by Taylor series [1, 2],
FEM approximates the solution u by a linear combination of shape functions
[3, 2]:

uh(x) =
∑

i

uiφi(x) = u′ φ(x). (1)
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The shape functions φi are defined on local support domains, therefore only
the nearest mesh neighbors contribute to the approximate solution in a given
point (see Figure 1).
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Figure 1: Problem domain Ω (dotted line) discretized by finite elements (left)
and by MFM nodes (right). FEM linear shape functions and MFM moving
least squares shape functions φ are shown (dashed line) for three points of
interest i, j, and k. The resulting solution approximation is drawn in bold.
The overlapping support domain are shaded and denoted by corresponding
elements of global stiffnes matrix K.

The shape functions are known in advance and are the same for all elements
of the same type. Solving a PDE corresponds to finding such coefficients ui

of the linear combination that result in minimization of the residual, i.e. the
difference between left-hand and right-hand side of the PDE. The well known
Galerkin method [4], a special case of weighted residual methods, forces the
residual to be minimal. The described methodology yields a sparse system
of algebraic equations Ku = F that has to be solved, usually by a parallel
iterative solver [2, 1, 5].

It is obvious that in some applications where the problem domain shape
and boundaries are changing significantly during the evolution of the solution,
initial elements cannot describe well neither the shape nor the boundaries of
the problem domain. For example in explosions some parts of the domain
will disappear, in structural analysis cracks in material will not follow ele-
ment boundaries, during heart beating the shape and structure of the heart
will change with time [6], etc. The standard solution is re-meshing after any
significant distortion in order to retain correspondence between meshes and
changes in the problem domain. New difficulties arise now, interpolation be-
tween subsequent meshes is needed, accuracy is degraded on critical parts of
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the problem domain, load balancing can be lost in case of parallel execution,
and finally a great amount of human intervention is needed. The mesh free
methods (MFM) are a viable alternative that can potentially alleviate men-
tioned problems.

The roots of MFM are in smooth particle hydrodynamics (SPH) method
first published in [7] in 1977. SPH method was applied for the simulation of
astronomical explosions with no boundaries and based on the strong form of
PDE, but not analyzed in details. A number of approaches based on weak
form and implementing boundaries have been published later [8, 9, 10, 11]
and mesh free methods are becoming widely used and standardized today. In
this paper we focus on an application of the mesh free local Petrov-Galerkin
method (MLPG) [12]. As the name indicates, MFM need no predefined global
mesh for their implementation. The problem domain and its boundary are
represented by a set of scattered nodes. Shape functions contributing to the
approximate solution are defined on local subsets of nodes called the support
domain instead of on finite elements (see Figure 1). The global stiffness matrix
K contains non-zeros only on places corresponding to the shaded integrands
in the figure.

In contrast to FEM, the shape functions differ for each point of interest
and are constructed during instead of before the numerical analysis. A widely
used method for constructing the MFM shape functions is the moving least
square (MLS) approximation. After the shape functions are created the MFM
methods follow a procedure analogous to FEM in order to generate the final
sparse system of algebraic equations.

In the rest of the paper some details about the MLPG are given. In
particular, MLS shape functions are introduced and the basic principles of the
solution approximation are described. In Section 3 MLPG is applied to the
one dimensional diffusion equation. Some more details about the derivation of
the system of algebraic equations and time discretization are given. The paper
concludes with a short discussion about possible parallelization efficiency of
the MFM and their future.

2 Meshless Local Petrov-Galerkin Method

As was described in the Introduction, mesh free methods discretize the domain
with nodes scattered throughout the domain and its boundaries. The only
requirement is that the nodes be dense enough, particularly in places where
the solution has large derivatives. In the one-dimensional case, the domain
[a, b] is discretized to nodes x1 . . . xn, x1 = a, xn = b.

In Meshless Local Petrov-Galerkin (MLPG) method, the solution is ap-
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proximated using moving least squares (MLS) approximation, which is used
to formulate the residual. The latter is then used to transform the weak form
of the PDE into an algebraic system.

2.1 Moving Least Squares Approximation

The MLS approximation, originated by Lancaster and Salkauskas [13], ap-
proximates the solution u as

uh(x) =
m∑

j=1

pj(x)aj(x) = pT (x)a(x), (2)

where p(x) is a vector of m monomials 1, x, . . . , xm−1, and a(x) is a vector of
coefficients, which are functions of x. Note that m should be smaller than the
minimal number of nodes in the support domain of any point x.

Given a set of nodes xI(I = SxL . . . SxR) in the support domain1 of point
x and the values uI that uh(x) should approximate, we define a weighted
residual J of the approximation:

J =
SxR∑

I=SxL

ŴI(x)
[
pT (xI)a(x)− uI

]
, (3)

where ŴI is a weight function centered at xI such that Ŵ = 0 outside the
support domain of xI . Ŵ thus ensures local support and gives less weighting
to nodes further away. Note that uh will only approximate the nodal values
uI and in general will not pass through them. uI is therefore termed nodal
parameter as opposed to nodal value.

The minimization condition for J requires

∂J

∂a
= 0, (4)

which results in a m×m linear system that has to be solved for every point of
interest x where uh is to be evaluated. Given x, the i-th MLS shape function
φi(x) that depends only on x and on the locations of nodes in its support
domain can be written explicitly.

1We use SxL and SxR as the indices of the leftmost and rightmost node in the support
domain of point x, respectively. Similarly, SiL and SiR correspond to the support domain
of the node xi.
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2.2 Solving time-dependent PDEs with MLPG method

Time-dependent PDEs require that the nodal parameters uj be functions of
time, while the shape functions φj remain functions of x only. Based on the
MLS shape functions, the solution approximation and its derivatives can be
written in the general form

uh(x, t) =
SxR∑

j=SxL

uj(t)φj(x), uh
t =

SxR∑
j=SxL

u′j(t)φj(x), (5)

uh
x =

SxR∑
j=SxL

uj(t)φ′
j(x), uh

xx =
SxR∑

j=SxL

uj(t)φ′′
j (x), (6)

where the subscripts denote derivatives.
Given a PDE, the MLPG method defines a local quadrature domain ΩQi

for each internal node xi (i = 2 . . . n − 1). In one dimension, the quadrature
domain is a continuous interval whose boundaries xQiL and xQiR are not nec-
essarily nodes. The integral of weighted residual over the quadrature domain
is then forced to equal zero: ∫

ΩQi

rŴidΩQi = 0, (7)

where Ŵi is a weight function that is non-zero only on ΩQi. Weight function
can be the same as the one used in MLS shape function construction.

Because uh(xj , t), in general, is not equal to uj(t), the boundary conditions
must be enforced with two additional equations:

uh(x1, t) = ua, u(xn, t) = ub. (8)

As will be shown, (7) and (8) can be transformed into a system of n linear
equations for n nodal parameters ui.

3 Applying MLPG to the Diffusion Equation

The one dimensional diffusion equation on interval [a, b] is

ut − cuxx − f = 0, u(a, t) = ua, u(b, t) = ub, u(x, 0) = u0, (9)

where u(x, t) is the solution, c and f are material properties (i.e. heat conduc-
tivity and heat source in case of heat equation), which can also be functions
of x and t. Dirichlet boundary conditions ua, ub and initial conditions u0 are
also prescribed. Given an approximate solution uh, the residual is defined as

r = uh
t − cuh

xx − f. (10)
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3.1 MLPG Procedure

Applying (7) to (10) gives a set of equations numbered from i = 2 to i = N−1:∫
ΩQi

[
uh

t − cuh
xx − f

]
ŴidΩQi = 0. (11)

The integral containing the second derivative uh
xx is evaluated by parts:∫

ΩQi

−cuh
xxŴidΩQi = −cuh

xŴi

∣∣∣xQiR

xQiL

+
∫

ΩQi

cuh
xŴi,xdΩQi, (12)

where ΩQi = [xQiL, xQiR]. Eq. (12) is substituted into (11):∫
ΩQi

[
uh

t − f
]
ŴidΩQi +

∫
ΩQi

cuh
xŴi,xdΩQi − cuh

xŴi

∣∣∣xQiR

xQiL

= 0. (13)

Then, uh and its derivatives are replaced by the sums introduced in (5-6):∫ xQiR

xQiL

 SxR∑
j=SxL

u′j(t)φj(x)− f(x)

 Ŵi(x)dx

+c

∫ xQiR

xQiL

SxR∑
j=SxL

uj(t)φ′
j(x)Ŵ ′

i (x)dx

− c

SxR∑
j=SxL

uj(t)φ′
j(x)Ŵi(x)

∣∣∣∣∣∣
xQiR

xQiL

= 0. (14)

The sums can be moved outside the integrals, e.g.,∫ xQiR

xQiL

SxR∑
j=SxL

u′j(t)φj(x)Ŵi(x)dx =
SQiR∑

j=SQiL

∫ xQiR

xQiL

u′j(t)φj(x)Ŵi(x)dx. (15)

Note that x in the integral can be anywhere in ΩQi, thus the shape functions
centered at all nodes in the support domain of any point inside ΩQi have to
be taken into account, i.e. shape functions at nodes from SQiL and SQiR.

Using (15) on (14) and rearranging the terms, we get

SQiR∑
j=SQiL

u′j(t)
∫ xQiR

xQiL

φj(x)Ŵi(x)dx−
∫ xQiR

xQiL

f(x)Ŵi(x)dx

+c

SQiR∑
j=SQiL

uj(t)

[∫ xQiR

xQiL

φ′
j(x)Ŵ ′

i (x)dx − φ′
j(x)Ŵi(x)

∣∣∣xQiR

xQiL

]
= 0. (16)
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In rewriting the system in matrix form, terminology stemming from struc-
tural mechanics is traditionally used. The stiffness matrix K contains the
terms with spatial derivatives, i.e. terms in square brackets in (16). Its ele-
ments corresponding to the contributions of internal nodes i are

Ki,j = c

[∫ xQiR

xQiL

φ′
j(x)Ŵ ′

i (x)dx− φ′
j(x)Ŵi(x)

∣∣∣xQiR

xQiL

]
, (17)

while the boundary conditions are enforced by separate equations. Note that
K is sparse because Ki,j is zero for j outside the interval [SQiL, SQiR].

The damping matrix C contains the time derivative terms, i.e. the first
term in (16):

Ci,j =
∫ xQiR

xQiL

φj(x)Ŵi(x)dx, (18)

and has the same sparseness pattern as K.
The force vector f contains the remaining second term in (16):

fi =
∫ xQiR

xQiL

f(x)Ŵi(x)dx. (19)

The final form of (16) is:

SQiR∑
j=SQiL

[
Ci,ju

′
j(t)

]
+

SQiR∑
j=SQiL

[Ki,juj(t)]− fi = 0 (20)

3.2 Time Discretization

Time is best discretized using the Crank-Nicolson scheme, which replaces the
time derivative at half-step u′j(t + ∆t/2) with the central difference approxi-
mation:

u′j(t + ∆t/2) =
uj(t + ∆t)− uj(t)

∆t
(21)

and approximates uj(t + ∆t/2) as the average of uj(t) and uj(t + ∆t). The
scheme is unconditionally stable and provides second order accuracy in both
time and space.

Collecting all the nodal parameters into a vector u(t) = (u(t)
1 , . . . , u

(t)
n ), the

matrix form of the time-discretized linear system (20) is obtained:

(2C + ∆tK)u(t+∆t) = (2C −∆tK)u(t) + 2∆tf . (22)
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3.3 Enforcing Boundary Conditions

To enforce the Dirichlet boundary conditions, the first and last equation in
the linear system (22) are replaced by (8), where uh is expressed as in (5).
The final system that has to be solved at every time-step has the form

Au(t+∆t) = Bu(t) +
∗
f , (23)

where

Ai,j =



φj(xi)
xj is in the support domain of
boundary node xi,

2Ci,j + ∆tKi,j

xj is in the support domain of any
point in the quadrature domain of
internal node xi,

0 otherwise,

(24)

Bi,j =



0
xj is in the support domain of
boundary node xi,

2Ci,j −∆tKi,j

xj is in the support domain of any
point in the quadrature domain of
internal node xi,

0 otherwise,

(25)

∗
f i =


ua i = 1,

ub i = n,

2∆tfi otherwise.

(26)

4 Discussion and Conclusions

A simple derivation of MLPG method for the one dimensional diffusion equa-
tion was presented in this paper. It becomes clear that the computational
complexity of the MFM is significantly higher than that of FEM. On the
other hand, FEM requires initial discretization of the problem domain into a
mesh and also later remeshing in cases where the domain shape will change
significantly. While MFM have not yet reached the final point of their de-
velopment and are still immature, they have good chances to become fully
adaptive and automatic, eliminating any manual work needed.

In the era of ever faster computers, the calculation complexity could be al-
leviated by parallel computation. The basic properties of mesh free approach
(locality and higher computational load) are promising also for parallel imple-
mentation, because high speedups can be expected. Our future work will be
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focused mainly in this direction. Potential opportunities for the parallelization
of MFM with their performance analysis will be investigated in detail.
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[13] P. Lancaster and K. Salkauskas. Surfaces generated by moving least
squares methods. Math. Comput., 37:141–158, 1981.


