Parallel Numerics '05, 37-45 M. Vajtersic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)
Chapter 3: Differential Equations ISBN 961-6303-67-8

Theoretical Estimates of the
Speed-up of One Parallel Algorithm

Pavol Purcz

Technical University of Kogice
Faculty of Civil Engineering
Department of Mathematics

Vysoko§kolska 4
042 00 Kosice
Slovak Republic

An earlier suggested parallel "ring” algorithm for solving the spatially
one-dimensional initial-boundary-value problem (IBVP) for a parabolic
equation using an explicit difference method is shortly described. Asymp-
totical behaviour of the speed-up function of this parallel algorithm is
studied. The speed-up function is determined as the ratio between nec-
essary times for realization of the algorithm in sequentional and parallel
cases. Theoretical estimates of the speed-up function show the signifi-
cant speed-up of the parallel algorithm in comparison with the serial one
for large values of the parameter ¢, where ¢ is the maximum of values
computed by one processor during one time level. It is shown that the
coefficient of the speed-up tends to number of using processors, if the
parameter ¢ tends to infinity.

1 Introduction

Numerical applications tend to be dominant in parallel scientific computing.
The importance of boundary-value problems (BVP) for engineering applica-
tions motivates continuous development of fast numerical algorithms and their
solution as well as the effective usage of parallel computational systems. A
number of various approaches have been suggested, and some of them can be
found in [1], [2], [3], [7], [9] and in other papers.

Some theoretical aspects of using an explicit difference method in the case
of spatially one-dimensional initial-boundary-value problem (IBVP) were sug-
gested by Tyrtyshnikov [11] as a possible approach to the development of a

38 P. Purcz

parallel algorithm. Some properties of recurrence relations like those of the
explicit difference method were studied by Kogge [6]. In this paper, such an
algorithm is shortly presented also in the case of spatially one-dimensional
IBVP. This parallel algorithm in one-, two- and three-dimensional case is de-
scribed in detail in [8, 10]. Some theoretical estimates of the speed-up function
of the algorithm in case of spatially one- and m-dimensional IBVP are given.

2 One-dimensional IBVP problem

Let us consider a spatially one-dimensional IBVP for a parabolic equation

ou 0%u
- = -, t>0, 0 l 1
ot~ oz2 ‘T USTSb

u(0,z) = p(z), 0<z<ly 2

(1)
(2)
u(t,0) = «t), t>0 (3)
ult,lz) = B(t), t>0 (4)

where ¢, a, # are sufficiently smooth given functions such that

¢(0) = «(0),
¢(lz) = B(0).

We look for a sufficiently smooth function u(t,z), which satisfies the equa-
tion (1) with conditions (2) - (4). For the numerical solution of the problem
(1) - (4) let us consider the following explicit difference method of the form

uf — uffl uf__ll - 2uf_1 + k!

— i+1 ’ (5)

2
T hZ

where 7 > 0 (h, > 0) is time (spatial) step of discretization, u¥ are ap-
proximate values of the solution at the points (k,i), (i = 1,2,...,n; — 1,
E=1,2,..., mng-hg = l;). Moreover, uf = afty), uﬁz = B(tx), and
u) = ¢(x;), where z; = ihy, ty = kT.

Let us consider a natural number n, = ¢q-n, where ¢ > 1, n > 2. Then
the explicit difference scheme (5) can be realized on a parallel computer with
n processors P, Py, ..., P,.

At the beginning each processor computes values u) at g + 1 points ly-
ing on the axis O, using the initial condition (2). Then each processor starts
computation of values in the first time level according to the difference scheme
(5). In order to compute each value u%, 1=1,...,n; — 1, we need three values
ud 1, ul, ul,; from the previous time level. By the same procedure it is pos-
sible to determine next values uf in the next time level. The values computed

Theoretical Estimates of the Speed-up of One Parallel Algorithm 39

by one processor create points lying on tops, edges or inside a triangle. The
set of values in all mentioned points is said to be a triangular block of data.
If some processor P; has not enough data for computing values uf, the next
phase of the computational process - a data transfer between processors must
be determined. By analyzing missing data for the next computation of the
processor P; it is not difficult to find out that those are values at the points
lying in the two next marginal levels on the one side of the triangle created by
neighbouring processor. After finishing the data transfer a new stage of com-
putation using already transferred values follows. In this phase each processor
P; may compute next values uf using the difference scheme (5) and the set
of data in its memory. All values obtained at this computation stage by one
processor lie inside of the considered area. We can visualise them as points
lying inside or on the borders of a square. The set of values at these points is
said to be a square block of data. So the whole process of computations and
data transfers is regularly repeated. Fig.1 schematically describes the ”ring”
implementation of whole process in the case of 5 processors and the width
of ¢ points for one processor, where ¢ is the maximum of values which are
computed by one processor during one time level. Generally, for n processors
the whole data exchange process can be written in the form:

P(z mod n)+1 - P — P(n+i72 mod n)+1» 1=1,2,...,n (6)
k
P4 P5 P1 P2 P3 P4
Py Py Py Py Py
P P1 P2 P3 P4 P5
P1 P2 P3 P4 P5
q 2q 3q 4q E')q:nX i

Figure 1: The parallel algorithm with five processors (n = 5). The arrows
show the direction of the data transfer.

40 P. Purcz

3 Speed-up function of the algorithm

3.1 Studied problem

Let us consider a multi-processor computational system which performs two
kinds of actions:

a) numerical operations (addition, multiplication, ...),
b) information interchanges.

For many computational systems the mean time ¢, of the action of the type (a)
is often much less than the time ¢, of the action of the type (b), i.e. t, << t.
Let us suppose that t. &~ wi,; w >> 1. The term information interchanges,
or shortly interchanges represents transfer of data between processors. When
the performance of an algorithm is necessary NO numerical operations and
NC interchanges, then the time ¢ of its realization under the above conditions
will have the form:

t = NO.t, + NC.t,. (7)

A detailed discussion of the speed-up and communication complexity can
be found in [4], [5] and [12].
Other splitting strategies of the computational effort between processors can
be found in [13], [14],[15] and elsewhere.

3.2 Speed-up function in one-dimensional case.

We suppose that points), i = 0,1, ...,n,, given by initial condition ¢(z), are
computed in advance and stored in memory. We consider a layer which is ng+1
points long and ¢ points wide. This layer regularly repeats in all considered
parallel process. Each processor need (after expressing an element uf) five
arithmetical operations for computation of the values uf, 1=1,...,n4 k>0,
according to the difference scheme (5). In general, the number of arithmetical
operations for the computation of one point uf inside the considered layer and
on its border is not the same. It depends on the computational complexity
of the points specified by boundary conditions. We denote the number of
arithmetical operations needed for computation of the values ulg and uﬁm by
r(a) and r(f3), respectively. Then the whole number of arithmetical operations
needed for computation of the values in the considered area in the sequentional
case is

NOseq = 5(n1g — 1)q + [r(a) + r(B)]g = [5n1q + Pseqo(q)lq

Theoretical Estimates of the Speed-up of One Parallel Algorithm 41

and in the parallel case it is

NOpar = maz(5e®:5% + (%) + (@) + r(B)la} = [0 + Praro(@)a

On a parallel computer with n processors ordered in geometrical visualization
as a ring, we can suppose, according to (6), the corresponding connections for
data transfer between each two neighbouring processors (i.e. processor P is
connected with processor P,, processor P» is connected with processor Ps, etc.
and processor P, is connected with processor P;). In the parallel case each
processor needs according to the description of the algorithm ¢ interchanges
in the data exchange process in the considered area. Then

NCyeq =0

NCpar = q = qPCpary(q),

where Pseqo(q), Ppary(q) and PCpary(q) are 0-degree polynomials of the
variable ¢. (In this subsection in case m = 1 these polynomials are constants.)
Summary,

tseq = Noseqto + NCseqtc = [5%1(] + PseQO(Q)]qto
tpar = NOparto + NCpartc = [5(] + Pparg (Q)]qto + Q-PCpaTO(Q)tc-
Assuming t, = wt,; w >> 1, we can write the last equation in the form:
tpar = [5¢ + Pparo(q)lgto + ¢PCparo(q)wt,.

Now we are able to define the speed-up function f(n,q) as the ratio of time
needed for the realization of the algorithm in sequential case and the time in
parallel case. This gives:

’ tpar 5q + Pparo(q) + wPCpary(q)

(8)

3.3 Speed-up function in m-dimensional case.

Let us consider m-dimensional IBVP and a natural number expressed in the
form 72, n;. Then explicit difference scheme

k k—1 m k-1 okl k—1 ‘
9192...5m _uiliz---’im . Z 2122...%5—1...lm 2“’1112...2,” + 212225410 (9)
= h2
Tj

=1

U

T

42 P. Purcz

can be realized on a parallel computer with [[;; n; processors ordered in geo-
metrical visualisation in a spatially m-dimensional cube of size n1 Xng9 X ... XNy,
Similarly as in one-dimensional case, we can suppose the corresponding con-
nections for data transfer between each neighbouring processors. A term
neighbouring processors means the processor standing (in ordering of the spa-
tially m-dimensional cube) in the direction of each axis in this m-dimensional
space. Moreover, both the first and the last processor ordered in one line (or in
the direction in one axis), are also connected and create the ring-ordering con-
nection in this one direction. The number of arithmetical operations needed
for the computation of the values according to the difference scheme (9) can
be determined via mathematical induction.

Lemma.

The number of arithmetical operations needed for the computation of the
values according to the difference scheme (9) in case of spatially m-dimensional
IBVP is equal to NOseq = 4m + 1.

Proof.

The first step was determined in the previous subsection. This means that
the statement of our lemma holds for m = 1. Let us consider spatially I-
dimensional IBVP (I > 1) along with corresponding explicit difference scheme
in the form:

k k—1 l k—1 _ k—1 k—1
g4y iy T Uirig gy .y (10)

2
R,

t162...9 uiliz---il . Z 114255 —1...1
T

U

=1

Let us consider that NOseq = 41 + 1.
Now, let us consider spatially I + 1-dimensional IBVP. Then to right side of
the explicit difference scheme (10) we must add a term

k—1 k—1 k—1
Usinis ~ 2Wigin.iper T Yigig..ipe
2
h$l+1

which means that addition of each next one dimension results in performing
extra 4 numerical operations. Then, NOseq =4 +1+4 =4(l+1)+ 1 and
the proof is finished.

Thus

NOseq = [(4m + 1)¢™ [nj + Psegm—1(a)lg (11)
j=1

Theoretical Estimates of the Speed-up of One Parallel Algorithm 43

NOpar = [(4m + 1)¢™ + Ppary,—1(q)lq (12)
NCseq=0 (13)
NCpar = qPCparp—1(q), (14)

where Pseqp,—1(q), Pparm,—1(q) and PCparp,—1(q) are m— 1-degree polynomi-
als of the variable ¢. Relations (11)-(12) follow directly from the extension of
one-dimensional IBVP to m-dimensional one. Relation (14) follows from the
facts that the transferred data lie on the border of spatially m + 1-dimensional
objects, created in geometrical visualisation by each processor in a parallel
process. These objects lie in a similar layer, which is described in the previous
subsection. The considered layer is [[j;(n;q + 1) long (in the spatial axises)
and ¢ point wide (in the time axis).

To sum up,

m
tseq = NOseqlo + NCyeqte = [(4m + 1)g™ H n; + Pseqm-1(q)lqto
j=1
tpar = NOparto‘I'NCpartc = [(4m+1)qm+Ppa7'm71(Q)]qto‘l'qPCpaTmfl(Q)tc-

Assuming t. =~ wt,; w >> 1, we can write the last equation in the following
form:

tpar = [(4m + 1)qm + Pparmfl(Q)]qto + qPCpaTmfl(Q)wtu-

Hence, in general, for spatially m-dimensional IBVP we have the following
theorem.

Theorem.

(4m + 1)g™ H;-”Zl nj + Psegm—1(q)
4m + 1)g™ + Pparm-1(q) + wPCpary—1(q)

f(ni,n9,.snm,q) = ((15)

Corollary.

m
qliggof(nl,n%“-,nmaq) :jl:[lnj (16)

44 P. Purcz

4 Conclusion

Now, we can analyze the speed-up function of the considered parallel algorithm
in both cases, spatially one- or m-dimensional IBVP. As it can be seen, by using
a given multi-processor computational system, both the number of processors
n or H;’Ll n; and the coefficient w become constants. Solving a concrete
IBVP on the given computational system, a number of arithmetical operations
needed for computation of the values using boundary conditions becomes also
constant. Then the speed-up function depends only on parameter the ¢ -
maximum of values which are computed by one processor during one time
level; this is related to the selected density of data by spatial discretization of
the considered area. If the parameter ¢ is small, in some cases it could happen
that the sequentional algorithm will be more effective than the parallel one.
On the other side, the teoretical estimates of the speed-up function show the
significant speed-up for large values of the parameter ¢ in comparison with the
serial implementation of the difference method. Moreover, the asymptotical
behaviour shows that, provided the parameter g tends to infinity, then the
speed-up tends to an ideal value - number of processors.

References

[1] K. Burrage, Parallel Methods for Initial Value Problems. J. Appl. Num.
Math. 11 (1993), 5-25.

[2] J. Crank and P. Nicolson, A Practical Method for Numerical Evaluation
of Solutions of PDEs of the Heat-Conduction Type, Proc. Camb. Phil.
Soc. 43 (1947), 60-67.

[3] T. L. Freeman and C. Phillips, Parallel Numerical Algorithms, Prentice
Hall, (1992).

[4] K. Gallivan, R. J. Plemmons and A. H. Sameh, Algorithms for Dense
Linear Algebra Computations, SIAM Review 32,1 (1990), 54-135.

[5] G. H. Golub and C. F. Van Loan, Matriz Computations, The Johns Hop-
kins University Press, Baltimore and London, (1989).

[6] P. M. Kogge, Parallel Solution of Recurrence Problems, IBM Journal of
Research and Development 18,2 (1974), 138-148.

[7] J. M. Ortega and R. G. Voigt, Solution of PDE on Vector and Parallel
Computers, STAM, Philadelphia, (1985).

Theoretical Estimates of the Speed-up of One Parallel Algorithm 45

(8]

[9]

[10]

[11]

[12]

[13]

[14]

P. Purcz, Generalization of The Parallel Algorithm for Spatially Two -
and Three - Dimensional Dirichlet Problem for a Parabolic Equation,
Journal of Electrical Engineering, 50,10/s (1999), 36-39.

D. W. Peaceman and H. H. Rachford, The Numerical Solution of
Parabolic and Elliptic Differential Equations, J. Soc. Indust. Appl. Math.
3 (1955), 28-41.

P. Purcz, Parallel Algorithm for Spatially One- and Two-Dimensional
Initial-Boundary-Value Problem for a Parabolic Equation, Kybernetika
37,2 (2001), 171-181.

E. E. Tyrtyshnikov, Parallelization of Some Numerical Methods. In: Nu-
merical Solution of Partial Differential Equation, Lecture at the Slovak
Mathematical Society Seminar, Kosice, Slovakia (1992).

E. E. Tyrtyshnikov, Blocks Algorithms of Linear Algebra, Computational
Processes and Systems N9, Nauka, Moscow (1993), 3-34.

P. Zoeteweij, A Coordination-Based Framework for Distributed Con-
straint Solving, Lecture Notes in Computer Science, 2627 (2003), 171-
184.

V. S. Adve, J. Mellor-Crummey, M. Anderson, J. CH. Wang, D. A. Reed
and K. Kennedy, An Integrated Compilation and Performance Analy-
sis Environment for Data Parallel Programs, Proceedings of the 1995
ACM/IEEE conference on Supercomputing (CDROM), San Diego, Cali-
fornia, United States, (1995) 50-es.

G. Pini, M. Putti, Parallel Finite Element Laplace Transform Method for
the Non-equilibrium Groundwater Transport Equation, Int. J. Numer.
Meth. in Engineering 40 (1997), 2653-2664.

