
Parallel Numerics ’05, 15-24 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)

Chapter 2: Matrix Algebra ISBN 961-6303-67-8

Preconditioned Parallel
Block–Jacobi SVD Algorithm

Gabriel Okša1∗, Marián Vajteršic 2

1Institute of Mathematics, Dept. of Informatics
Slovak Academy of Sciences, Bratislava, Slovakia

2 Institute for Scientific Computing, University of Salzburg,
Salzburg, Austria

We show experimentally, that the QR factorization with the complete
column pivoting, optionally followed by the LQ factorization of the R-
factor, can lead to a substantial decrease of the number of outer parallel
iteration steps in the parallel block-Jacobi SVD algorithm, whereby the
details depend on the condition number and on the shape of spectrum, in-
cluding the multiplicity of singular values. Best results were achieved for
well-conditioned matrices with a multiple minimal singular value, where
the number of parallel iteration steps has been reduced by two orders of
magnitude. However, the gain in speed, as measured by the total parallel
execution time, depends decisively on how efficient is the implementation
of the distributed QR and LQ factorizations on a given parallel architec-
ture. In general, the reduction of the total parallel execution time up to
one order of magnitude has been achieved.

1 Introduction

The two-sided serial Jacobi method is a numerically reliable algorithm for the
computation of the eigenvalue/singular value decomposition (EVD/SVD) of
a general matrix A ∈ Cm×n, m ≥ n [1]. For certain classes of matrices [3], it
can achieve a high relative accuracy in computing the tiniest singular values
(or eigenvalues), which is of great importance in such applications as quantum
physics or chemistry.

Unfortunately, the Jacobi method – and especially its two-sided variant,
serial or parallel – belongs to the slowest known algorithms for computing the

∗Corresponding author. E-mail: Gabriel.Oksa@savba.sk



16 G. Okša, M. Vajteršic

EVD/SVD. Our experiments have shown that the dynamic parallel ordering,
which was proposed and implemented in [2], typically reduces the number
of outer parallel iteration steps in the two-sided block-Jacobi algorithm by
30 – 40 per cent for random, dense matrices of orders 103 – 104. In general,
however, this is not enough to make the method competitive with faster (albeit
possibly less accurate) algorithms based on the bi-diagonalization.

One way, how to further speed up convergence of the parallel two-sided
block-Jacobi SVD algorithm can be based on applying an appropriate pre-
conditioner to the original matrix A at the beginning of iteration process.
Ideally, such a preconditioner should concentrate the Frobenius norm of A
towards diagonal as much as possible. For the serial Jacobi method, the idea
of the pre-processing of matrix A (prior to its SVD) by the QR factorization
with column pivoting (QRFCP), optionally followed by the LQ factorization
(LQF) of R-factor, was tested by Drmač and Veselić in [4]. Together with some
other techniques (e.g., by sophisticated monitoring of the size of off-diagonal
elements for deciding when not to apply the Jacobi rotations), they were able
to speed up the one-sided serial Jacobi EVD/SVD algorithm significantly.

We extend the idea of a serial preconditioner to the parallel case. We show
that its combination with dynamic ordering can lead to a substantial decrease
of the number of parallel iteration steps, at least for certain matrices. The best
results were achieved for well-conditioned matrices with a multiple minimal
singular value, where the reduction can be as large as two orders of magnitude.
However, due to the inefficient implementation of the QRFCP (LQF) in the
current ScaLAPACK library, the reduction of the total parallel execution time
is about one order of magnitude.

The paper is organized as follows. In Section 2 we briefly introduce the
parallel two-sided block-Jacobi SVD algorithm with the dynamic ordering.
Section 3 is devoted to the variants of the pre- and post-processing based on
the QRF with CP, optionally followed by the LQF of R-factor. Experimental
results on a cluster of personal computers (PCs) are described in Section 4.
Here we also discuss the efficiency of dynamic ordering with respect to the
reduction of the number of parallel iteration steps needed for convergence.

Finally, Section 5 summarizes achieved results and proposes lines for fur-
ther research.

Throughout the paper, ‖A‖F denotes the Frobenius norm of a matrix A,
a:j is the jth column of A, and κ is the condition number of A defined as the
ratio of its largest and smallest singular value.



Preconditioned Parallel Block–Jacobi SVD Algorithm 17

2 Parallel algorithm with dynamic ordering

We only briefly mention basic constituents of the parallel two-sided block-
Jacobi SVD algorithm (PTBJA) with dynamic ordering; details can be found
in [2].

When using p processors and the blocking factor ` = 2p, a given matrix A
is cut column-wise and row-wise into an `× ` block structure. Each processor
contains exactly two block columns of dimensions m × n/` so that `/2 SVD
subproblems of block size 2× 2 are solved in parallel in each iteration step.

At the beginning of each parallel iteration step, it is necessary to map one
2 × 2 block SVD subproblem to each of p processors. This can be achieved
by some type of ordering. The so-called dynamic ordering is based on the
maximum-weight perfect matching that operates on the `× ` updated weight
matrix W using the elements of W+W T , where (W+W T )ij = ‖Aij‖2

F+‖Aji‖2
F.

Details concerning the dynamic ordering can be found in [2].
The termination criterion of the entire process is

F (A, `) =

√√√√ `−1∑
i,j=0, i6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F , (1)

where ε is the required accuracy (measured relatively to the Frobenius norm
of the original matrix A), and prec is a chosen small constant, 0 < prec � 1.

A local 2× 2 block subproblem is solved only if

F (Sij , `) =
√
‖Aij‖2

F + ‖Aji‖2
F ≥ δ , δ ≡ ε ·

√
2

` (`− 1)
, (2)

where δ is a given subproblem accuracy.

3 Variants of pre-processing and post-processing

3.1 QR factorization with column pivoting

As mentioned above, the main idea of pre-processing is to concentrate the
Frobenius norm of the whole matrix A towards its diagonal. For this pur-
pose, the QRFCP is applied to A at the beginning of computation. This
pre-processing step can be written in the form

AP = Q1R, (3)

where P ∈ Rn×n is the permutation matrix, Q1 ∈ Cm×n has unitary columns
and R ∈ Cn×n is upper triangular. Notice that this is a so-called economy-sized
QRFCP, where only n unitary columns of orthogonal matrix are computed.



18 G. Okša, M. Vajteršic

In the second step, the SVD of the matrix R is computed by the PTBJA
with dynamic ordering. Let us denote the SVD of R by

R = U1ΣV H
1 , (4)

where U1 ∈ Cn×n and V1 ∈ Cn×n are left and right singular vectors, re-
spectively, and the diagonal matrix Σ ∈ Rn×n contains n singular values,
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, that are the same as those of A.

In the final step, some post-processing is required to obtain the SVD of A,
A ≡ UΣV H . Using Eq. (4) in Eq. (3), one obtains

AP = (Q1U1)ΣV H
1 ,

so that
U = Q1U1 and V = PV1. (5)

As can be seen from Eq. (5), the post-processing step consists essentially of
one distributed matrix multiplication. Here we assume that the permutation
of rows of V1 can be done without a distributed matrix multiplication, e.g., by
gathering V1 in one processor and exchanging its rows.

3.2 Optional LQ factorization of the R-factor

The second variant of pre- and post-processing starts with the same first step
as above, i.e., with the QRFCP of A.

However, in the second step, the LQF of R-factor is computed (without
column pivoting), i.e.,

R = LQ2, (6)

where L ∈ Cn×n is the lower triangular matrix and Q2 ∈ Cn×n is the unitary
matrix. This step helps to concentrate the Frobenius norm of R towards the
diagonal even more (cf. [4, 5]).

Next, the SVD of L is computed in the third step by our parallel PTBJA
with dynamic ordering,

L = U2ΣV H
2 , (7)

and, finally, the SVD of the original matrix A ≡ UΣV H is assembled in the
post-processing step, where

U = Q1U2 and V = P (QH
2 V2). (8)

Hence, the post-processing consists essentially of two distributed matrix mul-
tiplications.

To illustrate the effect of both steps of pre-processing, Figure 1 depicts
the relative block distribution of the square of Frobenius norm of a random



Preconditioned Parallel Block–Jacobi SVD Algorithm 19

0

10

20
0

10

20

0

0.2

0

10

20
0

10

20

0

10

Figure 1: Relative block distribution (in per cent) of the square of Frobenius
norm of an original matrix A (left) and after the QRF with CP + LQF (right).
Random matrix A with n = 600, ` = 20, κ = 10, and with a multiple minimal
singular value.

dense matrix A before and after both pre-processing steps. The QRFCP and
the LQF are clearly able to concentrate more that 90 percent of the Frobenius
norm into diagonal blocks. Moreover, they also reveal the spectral shape of A.
This can be very useful for matrices with their spectra not known a priori.

Clearly, the time and space complexity of the second pre-processing vari-
ant is higher than of the first one. In general, one can expect some trade-off
between the parallel Jacobi algorithm applied to the original matrix A and
to the R (L) factor after one (two) distributed factorization(s). If the reduc-
tion of the number of outer iteration steps were not large enough, and if the
computation of one (two) factorization(s) were not very efficient on a given
parallel architecture, it could easily happen that the total parallel execution
time needed for the SVD of A would be higher for variants with pre- and post-
processing than for the Jacobi algorithm applied directly to A. To test the
behavior of both distributed factorizations, we have conducted some numerical
experiments that are described next.



20 G. Okša, M. Vajteršic

4 Implementation and experimental results

We have implemented three variants of the parallel two-sided block-Jacobi
SVD algorithm on the cluster of PCs named ‘Gaisberg’ at the University
of Salzburg, Salzburg, Austria. The first variant, denoted by [SVD], simply
applies the PTBJA to an original matrix A without any preconditioning. The
second method, denoted by [QRCP, SVD(R)], first computes the QRF with
CP of A and then applies the PTBJA to the R-factor. The computation
ends by the post-processing according to Eq. (5). Finally, the third variant,
denoted by [QRCP, LQ, SVD(L)], computes the QRF with CP of A, then the
LQF (without CP) of the R-factor, and applies the PTBJA to the L-factor
that comes out from the second factorization. To get the SVD of an original
matrix A, the post-processing step according to Eq. (8) is required.

The cluster of PCs consisted of 25 nodes arranged in a 5×5 two-dimensional
torus. Nodes were connected by the Scalable Coherent Interface (SCI) net-
work; its bandwidth was 385 MB/s and latency < 4µs. Each node contained
2 GB RAM with two 2.1 GHz ATHLON 2800+ CPUs.

All computations were preformed using the IEEE standard double preci-
sion floating point arithmetic with the machine precision εM ≈ 1.11 × 10−16.
By default, the constant prec = 10−13 was used for the computation of ε
and δ (see Eqs. (1) and (2)). The number of processors p was variable,
p = 4, 8, 24, 40, and depended on the order n of a square, real test matrix A,
which covered the range n = 2000, 4000, 6000 and 8000.

Matrix elements in all cases were generated randomly, with a prescribed
condition number κ and a known distribution of singular values 1 = σ1 ≥
σ2 ≥ · · · ≥ σn = 1/κ. More precisely, A = Y DZT , where Y and Z were ran-
dom orthogonal matrices with their elements from the Gaussian distribution
N(0, 1), and D was a diagonal matrix with a prescribed spectrum on its main
diagonal.

With respect to κ, there were well-conditioned matrices with κ = 10 and
ill-conditioned matrices with κ = 108. In all cases, the singular values were
contained in the closed interval [κ−1, 1], and two types of their distribution
were used. In the first distribution, a matrix had a multiple minimal singular
value with σ1 = 1 and σ2 = σ3 = · · · = σn = κ−1. In the second case,
the singular values were distributed in the form of a geometric sequence with
σ1 = 1 and σn = κ−1 (i.e., all singular values were distinct, but clustered
towards σn).

Numerical computations were performed using standard numerical lib-
raries, either from local (LAPACK) or distributed (ScaLAPACK) software
packages. In particular, the QRFCP and the LQF was implemented by the
ScalAPACK’s routine PDGEQPF and PDGELQF, respectively. Point-to-point and



Preconditioned Parallel Block–Jacobi SVD Algorithm 21

collective communication between processors was performed using the commu-
nication libraries BLACS (Basic Linear Algebra Communication Subroutines)
and MPI.

Experimental results are presented in subsequent tables, the format of
which is common for all of them. The first column contains the order of a
(square) matrix while the second one denotes the number of processors used
in an experiment. Afterwards, the results for individual methods are depicted
in the format of two sub-columns per method. The first sub-column contains
the number of parallel iteration steps niter needed for the convergence at given
accuracy, and the second sub-column contains the total parallel execution time
Tp.

4.1 Multiple minimal singular value

We begin with results for well-conditioned matrices with a multiple minimal
singular value, which are summarized in Table 1. Its last two columns contain

Table 1: Performance for ` = 2p, prec = 10−13, κ = 10, multiple minimal sing.
value.

[SVD] [QRCP, SVD(R)]
n p niter Tp[s] niter Tp[s] [Ratio niter] [Ratio Tp]

2000 4 170 1778.5 3 91.0 56.7 19.5
4000 8 452 6492.5 4 307.7 113.0 21.1
6000 24 1817 5367.6 6 369.3 302.8 14.5
8000 40 3289 7709.9 7 1273.2 469.0 6.1

ratios of niter and Tp for two methods studied – namely, [SVD] and [QRCP,
SVD(R)]. The reduction of niter using the QRF with CP is enormous (two
orders of magnitude), and the value of niter for the [QRCP, SVD(R)] method
increases only slowly with an increasing n. Thus, considering the reduction of
niter alone, the QRF with CP plays the role of an almost ideal preconditioner in
this case. It is also clear that employing the additional LQF of R-factor is not
necessary because the QRF with CP has already reduced niter substantially.

In contrast to niter, savings in Tp are of one order of magnitude less. The
reason of this behavior lies in a high relative time complexity of the QRFCP.
For all matrix orders, the QRFCP takes more than 30 per cent of Tp, for
matrix orders up to 6000 even more than 50 per cent. This means that the
QRF with CP, as currently implemented in the ScaLAPACK library, is not
very efficient (at least for our cluster of PCs). In other words, the substantial



22 G. Okša, M. Vajteršic

decrease of niter is not sufficient for decreasing Tp when another portion of
parallel computation is not implemented efficiently.

The portion of Tp spent in collective communication includes the gathering
of matrices U, Σ and V on one processor after finishing the computation.
For n = 8000 and the number of processors p = 40 this gathering alone
suddenly jumps in time complexity, so that the whole collective communication
takes more than 50 per cent of Tp. It is possible that the operating system
takes another algorithm for gathering columns of double precision floats of
length 8000 than for smaller vectors. On the other hand, the distributed
matrix multiplication needed in the post-processing step is implemented quite
efficiently. Its time complexity actually decreases with the matrix order, and
only about 7 per cent of Tp is needed for its completion for n = 8000. Similar
results regarding the profiling of pre- and post-processing steps were observed
also for other experiments.

Results for ill-conditioned matrices with a multiple minimal singular value
are depicted in Table 2. When compared with well-conditioned matrices (see

Table 2: Performance for ` = 2p, prec = 10−13, κ = 108, multiple minimal
sing. value.

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 59 832.9 11 163.5 7 153.1
4000 8 191 3308.8 26 547.9 15 609.8
6000 24 819 2791.8 72 632.6 47 842.9
8000 40 1512 5169.6 125 1811.0 79 1782.5

Table 1), one can conclude that for the [QRCP, SVD(R)] method the number of
parallel iteration steps niter depends much more strongly on n. The additional
LQF of the R-factor helps to decrease further the number of parallel iteration
steps, but savings in the total parallel execution time are not proportional
due to the large time complexity of two distributed factorizations during pre-
processing.

4.2 Geometric sequence of singular values

In the following experiments, the singular values were distributed in the form
of a geometric sequence in the interval [κ−1, 1] with σ1 = 1 and σn = κ−1, i.e.,
they were distinct but clustered towards σn.

Results for well-conditioned matrices are depicted in Table 3. As can be



Preconditioned Parallel Block–Jacobi SVD Algorithm 23

Table 3: Performance for ` = 2p, prec = 10−13, κ = 10, geometric sequence of
sing. values.

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 41 665.5 39 699.3 36 758.1
4000 8 102 2486.6 93 2594.4 84 2580.8
6000 24 356 1570.0 323 1866.2 283 1828.5
8000 40 621 2785.2 565 2827.4 492 2566.9

seen, neither the [QRCP, SVD(R)] method nor the [QRCP, LQ, SVD(L)] one
can reduce substantially the total parallel execution time Tp, since niter is
reduced by at most 10 – 20 per cent, which is not enough.

Table 4 depicts the experimental results for ill-conditioned matrices. Using

Table 4: Performance for ` = 2p, prec = 10−13, κ = 108, geometric sequence
of sing. values.

[SVD] [QRCP, SVD(R)] [QRCP, LQ, SVD(L)]
n p niter Tp[s] niter Tp[s] niter Tp[s]

2000 4 44 520.6 43 565.9 19 315.0
4000 8 137 2132.9 114 2042.7 45 1067.2
6000 24 559 1883.4 527 2136.7 154 1186.7
8000 40 1025 3583.9 969 3929.3 260 2034.4

the [QRCP, SVD(R)] method in this case leads to the reduction of niter by only
5 – 30 per cent, which is not enough to reduce the total parallel execution time
Tp. In fact, for n = 6000 and n = 8000 the total parallel execution time is even
higher than for the SVD of A alone. Therefore, the application of the [QRCP,
LQ, SVD(L)] method is required to decrease niter further. Consequently, Tp

is decreased albeit the savings, as compared to the direct SVD of A, are only
around 40 – 50 per cent.

5 Conclusions

The QRF with column pivoting, optionally followed by the LQF of R-factor,
concentrates the Frobenius norm towards a diagonal (however, to a different



24 G. Okša, M. Vajteršic

level for different spectra), and reveals the shape of the spectrum of A. Our
experiments have shown that the largest savings, both in niter and Tp, as
compared to the simple block-Jacobi SVD, can be observed for well-conditio-
ned matrices with a multiple minimal singular value. In this case, the QRF
with CP and the subsequent SVD of R-factor is the method of choice. For
ill-conditioned matrices with a geometric distribution of singular values, the
additional pre-processing step (the LQF of R-factor) is required to substan-
tially reduce niter. Consequently, Tp is also reduced, but only mildly.

The current main bottleneck of the proposed preconditioning is the high
time complexity of the distributed QRF with CP, and of the distributed LQF,
as implemented in the current version of ScaLAPACK. This is plainly seen in
the case of well-conditioned matrices with geometrically distributed singular
values, where the reduction of niter is not sufficient for decreasing Tp. It is an
open and interesting question whether this state of affairs can be improved.
We also plan to extend numerical experiments to larger matrix dimensions of
order 105–106.

Acknowledgments

We thank the anonymous referees for their valuable comments and suggestions.
This research was supported by the VEGA Grant no. 2/4136/24 from the
Scientific Grant Agency of the Ministry of Education and Slovak Academy of
Sciences, Slovakia.

References

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates
for the solution of algebraic eigenvalue problems: A practical guide, First
ed., SIAM, Philadelphia, 2000.

[2] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel
block-Jacobi SVD algorithm, Parallel Computing 28 (2002) 243-262.

[3] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR,
SIAM J. Matrix Anal. Appl. 13 (1992) 1204-1245.

[4] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm,
2004, in preparation.

[5] G. W. Stewart, The QLP approximation to the singular value decompo-
sition, SIAM J. Sci. Comput. 20 (1999) 1336-1348.


