
Parallel Numerics ’05, 97-107 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)

Chapter 5: Optimization and Classification ISBN 961-6303-67-8

Sequential and Parallel Algorithms
for the Shortest Common

Superstring Problem

Xuan Liu1,∗, Ondrej Sýkora2

1 2Department of Computer Science, Loughborough University,
Loughborough, Leicestershire LE11 3TU, The United Kingdom

We design sequential and parallel genetic algorithms, simulated annealing
algorithms and improved greedy algorithms for the shortest common su-
perstring problem(SCS), which is to find the shortest string that contains
all strings from a given set of strings. The SCS problem is NP-complete
[7]. It is even MAX SNP hard [2] i.e. no polynomial-time algorithm
exists, that can approximate the optimum to within a predetermined
constant unless P=NP. We compare the above mentioned algorithms ap-
plied to several randomly generated test cases. The test results show the
superiority of the parallel island genetic algorithm.

1 Introduction

The shortest common superstring problem has applications in both compu-
tational biology and data compression [11, 12, 14, 16]. DNA sequencing is
the task of determining the sequence of nucleotides in a molecule of DNA.
These nucleotides are one of adenine, cytosine, guanine, and thymine, and
are typically represented by the alphabet {a,c,g,t}. Current laboratory pro-
cedures can directly determine the nucleotides of a fragment of DNA up to
about 600 nucleotides long. Once the nucleotides of all of the fragments have
been determined, the sequence assembly problem is the computational task
of reconstructing the original molecule from the overlapping fragments. The
shortest superstring problem is an abstraction of this problem [1].

Let s1 = a1 ... ar and s2 = b1 ... bs be strings over some finite alphabet
Σ. We say that s1 is a substring of s2 if there is an integer i ∈ [0 , s− r] such

∗Corresponding author. E-mail: 1x.liu@lboro.ac.uk,2o.sykora@lboro.ac.uk

98 X. Liu, O. Sýkora

that aj = bi+j for 1 ≤ j ≤ r. We also say in this case that s2 is a superstring
of s1.

An instance of the shortest common superstring problem (SCS) is a set of
strings S = {s1,...,sn} over a finite alphabet Σ and the problem is to find a
minimum length string that is a superstring of every si ∈ S.

Several linear approximations for the SCS problem have been proposed.
Blum et al. [2] were the first to introduce an approximation algorithm that
produces a solution within a factor of 3 from the optimum. This was improved
by Jiang et al. [9] who have obtained a 22

3 approximation and by Z Sweedyk
[17] with 21

2 approximation. Anyway these approximation algorithms are not
eaily implementable and in practise we use either heuristics or some kind of
machine learning algorithms.

Holland originated genetic algorithms (GAs) in the 1960s. GAs are based
on the principles of natural selection and adaptation and are claimed to be able
to explore good solutions relatively quickly in a large and complicated search
space. The power of the algorithms comes from the mechanism of evolution,
which allows searching through a huge number of possibilities for solutions.It is
that chromosomes are the information carriers and that the evolution process
works at the chromosome level through reproduction. The reproduction can be
made by either combining chromosomes from the parents to produce offspring,
a process called crossover, or by a random change occurring in the chromosome
pattern, termed mutation.

A GA creates an initial population of solutions at beginning. Then, the GA
evaluates fitness function to all members of population, to characterise them
from the most fit to the least fit. Afterwards, genetic operators transform the
parent chromosomes to their offspring according to the criteria of fitness. The
GA repeats the processes of selection, crossover and mutation to artificially
simulate genetic operations.

Zaritsky et al. [19] recently achieved good results by using the GA ap-
proach. We do not know about any other sequential or parallel GA application
for the shortest common superstring problem.

In this paper, we focus on design parallel island GA and compare another
three sequential and parallel approaches, which are Greedy algorithm, Sort
and Merge algorithm and Simulated Annealing algorithm. The experimental
results show that the parallel island GA produces the best results out of those
four parallel algorithms.

Algorithms for the Shortest Common Superstring Problem 99

2 Description of the Algorithms

2.1 The Sequential and Parallel Genetic Algorithm (GA) for
SCS

Given a set of strings as the input to the SCS problem, the GA generates
an initial population of random candidate solutions ind1, . . . , indm after pre-
processing, which is elimination of the substrings from the input. Let m be
the population size. Each individual of initial population gets the order of the
set of string blocks. The fitness function is defined as Maximal Total Length−
Current Total Length, where Maximal Total Length =

∑n
i=1 |si|. To minimise

the length of the superstring we need to maximise the fitness function.
GAs are complex algorithms controlled by many parameters and the results

produced by them heavily depend on setting these parameters correctly. In our
GA we use the following crossover operation for the SCS: In every generation
(iteration), the GA randomly, with a certain probability pcross, (according
to fitness value) chooses two parental individuals, ind1 and ind2. Then a
part of their strings at a random position is exchanged to form two offspring.
Afterwards, the mutation is executed by exchange a block on each individual
with some probability pmut in the new population. This procedure is repeated
until m new offspring are generated.

The algorithm terminates when the number of generations ng reaches a
preset value. In this algorithm, we set ng equal to 3000.

Parallel computing has been a valuable tool for improving running time
and enlarging feasible sizes of problems and it is an economic and strategic
issue. Strong efforts have been put into developing standards for parallel
programming environments, such as PVM (Parallel Virtual Machine) [15],
MPI (Message Passing Interface) [13] and HARNESS [6], etc. Probably the
most common is PVM.

In this article we used PVM, as it is standard and it frees the algorithm
designer from load balancing, resource control, fault tolerance and other prob-
lems with parallel software.

One of the frequently cited advantages of using GAs is their ”natural”
parallelism. Global Model PGAs use parallel techniques to speed up the op-
eration of the GA without changing the basic operation of the sequential GA.
In this model, a single global population is always employed without locality
considerations. In fact, the Global Model does not achieve good results due to
machine dependency considerations.

Another famous parallelized GAs approach is Cellular Model [18]. The
Cellular Model seeks to exploit fine grained parallel architectures. In general,
the Cellular Model assigns one chromosome per processor and limits selection

100 X. Liu, O. Sýkora

and crossover to local neighborhood. It achieves similar effect of isolation as
found in the Island Model where the isolation is set by distance.

In this paper we use the Island Model to exploit a coarse-grain parallelism,
which can be easily extended to a distributed system. The basic idea of Island
Model is to distribute the total population among the available processors, and
to execute a classical GA in each sub-population. Each processor is using same
GA but independently of the others. Cantú-Paz [3, 4] also calls it multiple-
population coarse grained GA.

Each GA is usually started with a different random seed. Therefore, every
few generations, sub-populations could swap few individuals. We call this
process migration.

In our PVM GA for SCS problem, each processor executes the sequential
algorithm. After each generation there is a possibility that two processors
will share some ”genetic material”. We chose 1% opportunity that two of the
available processors, randomly chosen, will swap the migrants. Migrants were
selected with the GA’s selection function. Also, migrants accepted from the
other processor replaced the worst fit individuals with the ones just received.
These parameters were achieved in experimental way.

2.2 The Sequential and Parallel SA for SCS

Simulated Annealing (SA) is an advanced Local Search method which finds
its inspiration from the physical annealing process studied in statistical me-
chanics [10]. The SA algorithm repeats an iterative procedure that looks for
the better configurations while offering the possibility of accepting worse con-
figurations. The SA algorithm provides opportunities to jump out from local
minima. All candidate solutions of the problem are modelled as possible con-
figurations of a thermal system. Therefore, the parameter space S becomes
the space of all configurations. The energy E of the system, relies on the cur-
rent configuration. The optimal solution corresponds to the minimum energy
configuration. According to the Boltzmann distribution, given a temperature
T , the probability of the system being in a certain configuration u is:

πT (u) =
e
−E(u)

kT∑
v∈S e

−E(v)
kT

(1)

where k is the Boltzmann’s constant, and sum is taken over all configura-
tions.

There are several important components in our SA algorithms. Let f(s)
stand for the length of the current superstring s. Our implementation of
temperature reduction was proposed by Huang et al. [8]. It reduces the tem-

Algorithms for the Shortest Common Superstring Problem 101

perature according to the length of Markov chains that the length of a chain is
redetermined at each temperature level. The new temperature Tnew is set to
Tolde

−λTold
σ , where λ is randomly chosen constant from (0, 1). The parameter σ

controls the reduction ratio. Parameter L stands for the number of iterations
with a temperature. The pseudocode of our sequential SA algorithm for SCS
follows.

Algorithm 1 [Sequential SA algorithm for SCS]
1: randomly generate an initial string list sc from the string set S
2: set an initial T = Tmax

3: set λ and σ
4: while termination = false do
5: for 0 ≤ i < L do
6: randomly choose string list snew

7: ∆ = f(snew)− f(sc)
8: if ∆ ≤ 0 or ((∆ > 0) and (e

−∆
T) is verified) then

9: sc ← sn

10: end if
11: if T < Tmin then
12: termination = true
13: end if
14: end for
15: T ← T (e−

λT
σ)

16: end while
17: output

Our parallel SA algorithm is implemented in PVM. The idea of parallelism
is borrowed from the Island Model genetic algorithm. Due to the tempera-
ture plays a crucial role in SA, we decided to run the sequential SA algorithm
independently on each worker. After a while, all workers halt the computa-
tions and the master randomly chooses two of them to exchange their current
temperatures. As long as they receive the temperature from the other, they
continue working. Each worker stops working and returns its best result to
the master when it reaches the termination-condition. Otherwise, the workers
should exchange their current temperatures with others and carry on working.
Here, the number of iterations in each stage is randomly generated.

2.3 The Sequential and Parallel Greedy algorithms for SCS

The Greedy algorithm is a simple and fast sequential approximation of a short-
est superstring. Given a non-empty set of strings S = {s1, ..., sn}, repeat

102 X. Liu, O. Sýkora

the following steps until S contains only one string: Select a pair of strings
s
′
, s

′′ ∈ S that maximizes overlap between s
′
and s

′′
, remove s

′
and s

′′
from

S replacing them with the merge of s
′
and s

′′
.

We improved the Greedy Algorithm for SCS as follows: Sort and Merge
(SM) algorithm: Let overlap between two strings sx and sy be of the length r.
Produce superstring and r for any pair of distinct strings in the set of strings
S. Sort the pairs in nonincreasing order according to r; if the superstrings sxy

and swz have the same length overlap, we prefer the superstring with smaller
length. Combine the strings of S according to this order to create a superstring
for S.

In our experiments, the SM algorithm always produced shorter common
superstring than the Greedy algorithm. Moreover the SM algorithm was faster
than the Greedy algorithm.

Figure 1: Arrange the combination of each two strings into processors.

Figure 2: Merge the results into one list until a whole sorted list is formed.

As we described above, our SM algorithm has three main parts: produce
the superstring sxy for each two distinct strings sx, sy, sort the pairs of strings
according to length of sxy and combine them. Only the first and the second
parts of this algorithm are suitable for parallelisation. Given a non-empty set

Algorithms for the Shortest Common Superstring Problem 103

Strings Greedy Results SM Results GA Results SA Results
10 127bits 125bits 120bits 130bits
20 247bits 245bits 243bits 250bits
30 391bit 387bits 390bits 408bits

Table 1: The average test results for different problem sizes.

Strings Greedy Time SM Time GA Time SA Time
10 0.25ms 0.15ms 3593ms 70ms
20 0.9ms 0.65ms 14118ms 599.32ms
30 2ms 1.89ms 32831ms 2117.8ms

Table 2: The average running time for different problem sizes.

of strings S = s1, ..., sn, e.g. n = 8, arrange the combinations of each two
strings into processors as in Figure 1. In this example, we have 4 processors.

After this, the processors will merge their results into one list until a whole
sorted list is formed(see Figure 2).

Afterwards, the processor which contains the whole list creates the super-
string using the idea which was described in the sequential algorithm.

3 Test Results and Discussion

The Table 1 and Table 2 show our experiments for the four sequential algo-
rithms run on different number of strings. The strings were randomly gener-
ated by our testing platform.

We tested sets of 10, 20 and 30 strings, each string with length from 10
to 20 bits. For each of the randomly generated problem instances each algo-
rithm was run 5 times. We discarded the worst results and got the average
results from others. The configurations of the sequential GA were: the total
population size was 30. The probability of crossover was 0.01, the probability
of mutation probability was 0.6, the number of generations was 3000. The
parameters of the sequential SA were: initial temperature was 100, the tem-
perature reduction factor was 0.9. the minimum temperature was 0.001. The
Table 1, contains the best average results, which is the achieved superstring
length, and the corresponding running time is in Table 2.

From experiments for our sequential algorithms we can see that our GA
can get the best results when the input strings are not more than 30. While
the problem size increased, the population size and total generation number

104 X. Liu, O. Sýkora

String Blocks PVM Greedy PVM SM PVM GA PVM SA
10 130bits 127bits 123bits 131bits
20 249bits 247bits 243bits 253bits
30 385bits 381bits 375bits 382bits

Table 3: The PVM test results and running time for different problem sizes.

were not changed which meant that the GA’s searching abilities decreased.
Our results for GA confirmed the results obtained by [19]. Our SM algorithm
can get very good results from the efficiency point of view. On the other side,
the Greedy and SA did not perform very well. For longer strings one can
first use SM-algorithm and then using the achieved solution in the population
apply GA. Similar strategy can be used for parallel genetic algorithm.

Our PVM implementation of the algorithms have been run on a cluster
of 20 Sun ULTRAsparc 5 workstations running Debian GNU/Linux. They
are connected with 100Mbit Ethernet using Cisco 2950 switches. We tested
the sequential and parallel version Greedy, SM, GA and SA algorithms. Both
parallel algorithms used 8 processors. In the parallel island model GA algo-
rithm, we set the migration rate to 1% and kept the same configurations as
the sequential GA. We used the same testing methods as for the sequential
algorithms.

Figure 3: Mutation rate efficiency.

From our test (see Table 3) results one can see that the parallel GA pro-
duced the best results among these four parallel implementations. The parallel
SA algorithm gets better results than its sequential counterpart due to the par-
allel algorithm enlarges their total searching space. The parallel Greedy and
SM algorithms can not achieve better results than their sequential versions.
On the other side, the running time we achieved for both of them was not bet-
ter. The reason is that the communication time increased the total running

Algorithms for the Shortest Common Superstring Problem 105

time.
One can also see that mutation rate influences the results of parallel and

sequential GA algorithm (a known fact, see [4]).

Figure 4: Worker numbers and the results.

From the Figure 3, we can see the better results always happen when we
have mutation rate equal to 0.6.

We also observed that the worker numbers can affect the results of the
parallel SA algorithm (see Figure 4). The more workers, the shorter SCS was
produced. Possible explanation is that the parallel SA algorithm has bigger
searching space than sequential SA algorithm and this ability is used efficiently.
Another explanation could be that the exchange of current temperatures on
different processors helps the searching process.

4 Conclusions

In this paper we designed sequential Greedy, GA and SA algorithms for the
SCS problem. We also created a sequential SM algorithm and its parallel
version, parallel island GA and parallel SA algorithms for the SCS problem.
Comparison of all four parallel algorithms shows the superiority of the parallel
island GA algorithm. Our results suggest application of the following simple
strategy to get good results: first, use SM algorithm sequentially and the
result include into the starting population and then apply our PVM GA. In
the journal article we will discuss how the number of processors influences the
quality of results as well as possible improvements of the GA for longer strings.

References

[1] Armen, C., Stein, C., A 22
3 -approximation algorithm for the shortest

superstring problem, CPM, 1996, 87-101.

106 X. Liu, O. Sýkora

[2] Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis M., Linear approxi-
mation of shortest superstrings, JACM 41 (1994), 634-647.

[3] Cantú-Paz, E., Implementing fast and flexible parallel genetic algorithms.
Handbook of Practical Genetic Algorithms, Volume 3. Editor: Chalmers,
L., CRC Press, 1999.

[4] Cantú-Paz, E., A survey of parallel genetic algorithms, Calculateur Par-
alleles, Reseaux et Systems Repartis 10, 141–171.

[5] Corcoran, A.L., Wainwright, R.L., A parallel island model ge-
netic algorithm for the multiprocessor scheduling problem, in: Proc.
ACM/SIGAPP Symposium on Applied Computing, 1994, 483-487.

[6] Dongarra, J., Geist, A., Kohl, J.A., Papadopoulos, P.M., Sunderam,
V., HARNESS: Heterogeneous Adaptable Reconfigurable Networked
Systems, Oak Ridge National Laboratory, http://www.csm.ornl.gov/
harness/.

[7] Garey, M., Johnson, D., Computers and Intractability. Freeman, New
York, 1979.

[8] Huang, M.D., Romeo, F., Sangiovanni-Vincentelli, A., An efficient general
cooling schedule for simulated annealing, in: Proc. IEEE INT. Conf. on
Computer Aided Design, 1986, 381-384.

[9] Jiang, T., Jiang, Z., Breslauer, D., Rotation of periodic strings and shorst
superstrings, in: Proc. Third South American Conference on String Pro-
cessing, 1996.

[10] Kirkpatrick, S., Gelatt, C., Vecchi, M., Optimization by simulated an-
nealing, Science, 220 (1983), 671-680.

[11] Lesk A.,(editor), Computational Molecular Biology, Sources and Methods
for Sequence Analysis. Oxford University Press, 1988.

[12] Li, M., Towards a DNA sequencing theory (learning a string), in: Proc.
31st Annual Symposium on Foundations of Computer Science, 1990, 125–
134.

[13] Message Passing Interface, http://www-unix.mcs.anl.gov/mpi/, 29
June 2004

[14] Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E., Algorithms for some
string matching problems arising in molecular genetics, in: Proc.IFIP
Congress,(1983),53–64.

Algorithms for the Shortest Common Superstring Problem 107

[15] Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/, 29 June
2004

[16] Storer, J., Data Compression: Methods and Theory. Computer Science
Press, 1988.

[17] Sweedyk, Z., A 21
2 -approximation algorithm for shortest superstring,

SIAM Journal of Computing 29 (1999), 954-986.

[18] Whitely, D., Cellular genetic algorithms, in: Proc. Fifth International
Conference on Genetic Algorithms, 1993.

[19] Zaritsky, A., Sipper, M., Coevolving solutions to the shortest common
superstring problem, Biosystems 76 (2004), 209-216.

