
Parallel Numerics ’05, 47-56 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)

Chapter 3: Differential Equations ISBN 961-6303-67-8

Parallel Numerical Solution
of 2-D Heat Equation

Verena Horak∗, Peter Gruber

Department of Scientific Computing,
University of Salzburg

Jakob-Haringer-Str. 2, 5020 Salzburg, Austria

In this paper, we will discuss the numerical solution of the two dimen-
sional Heat Equation. An approximation to the solution function is cal-
culated at discrete spatial mesh points, proceeding in discrete time steps.
The starting values are given by an initial value condition. We will first
explain how to transform the differential equation into a finite difference
equation, respectively a set of finite difference equations, that can be
used to compute the approximate solution. We will then modify this
algorithm in order to parallelize this task on multiple processors. Special
focus is given on the performance respectively performance improvement
of a parallelized algorithm on different hardware platforms. Addition-
ally we will run the implemented algorithm on two different clusters and
calculate speedup based on the execution time of 1 to 32 CPUs.

1 Introduction

In this paper, we will describe how to solve a 2-dimensional differential equa-
tion using parallel algorithms. We will illustrate the procedure with a concrete
example, namely the so called ”Heat Equation”

ut = c · (uxx + uyy), 0 ≤ x, y ≤ 1, t ≥ 0,

with initial and boundary conditions

u(0, x, y) = f(x, y),
u(t, 0, y) = α0(y),

∗Corresponding author. E-mail: vhorak@cosy.sbg.ac.at

48 V. Horak, P. Gruber

u(t, 1, y) = α1(y),
u(t, x, 0) = β0(x),
u(t, x, 1) = β1(x) .

The solution function u(t, x, y) of this differential equation describes the
temperature of, for example, a thin metal plate of area 1, at every position
(x, y), 0 ≤ x, y ≤ 1, at any time t ≥ 0. At the edge points of the plate, we
have constant temperatures α0(y), α1(y), β0(x) and β1(x). At time t = 0, the
temperature of every point (x, y) is given by f(x, y). In the most simple case,
we may assume that f(x, y) is a constant function with its value somehow in
the range defined by the boundary conditions.
For example, the temperature at position (x = 0.3, y = 0.5) at time t = 10.4
is given by u(10.4, 0.3, 0.5).
In this paper, we try to approximate the values of the solution function
u(t, x, y). This means, we will consider discrete time points t0 = 0, t1, . . . , tk, . . .
and discrete positions (xi, yj), 0 ≤ i, j ≤ (n + 1) and compute the values of
u(tk, xi, yj), 0 ≤ i, j ≤ n + 1, k ≥ 0.
The differential equation will be replaced by a finite difference equation in the
solution process. With this method we can calculate the approximated values
u(tk, xi, yj) by proceeding from time point tk−1 to time point tk, if approximate
values at time tk−1 are already known for all positions (xi, yj).

2 Solution Method

We want to approximate the solution function u(t, x, y) at discrete points
(tk, xi, yj). Thus, we will first of all define spatial mesh points

(xi, yj) = (i ·∆s, j ·∆s), i, j = 0, 1, 2 . . . , n + 1 ,

where ∆s = 1
n+1 , and temporal mesh points

tk = k ·∆t, k = 0, 1, 2, . . . ,

for suitably chosen ∆t. (Note that in principle there is no upper boundary for
time points tk!)
With respect to computational effort and exactness of the approximation, n
and ∆t may be chosen arbitrarily. In particular, one has to secure that the
numerical method will be stable. This means, that small perturbations e.g.
resulting from rounding errors do not cause the resulting numerical solutions
to diverge from each other without bound.

Parallel Numerical Solution of 2-D Heat Equation 49

For the Heat Equation, we know from theory that we have to obey the restric-
tion

∆t ≤ (∆s)2

2c

in order for the finite difference method to be stable.
The solution function u(t, x, y) represents the temperature at point (x, y) at
time t. The area in question is the unit square, so that we can discretize this
area using a (n + 2)× (n + 2)-matrix Uk, where the entries uk

ij correspond to
the temperature value at the point (xi, yj) (for 0 ≤ i, j ≤ n+1) at time point
tk (for t ≥ 0).
In order to calculate the approximate solution, we will replace any derivative
by finite differences. In particular, for any point (tk, xi, yj) we will set

ut ≈
uk+1

i,j − uk
i,j

∆t

and

uxx ≈
uk

i+1,j − 2uk
i,j + uk

i−1,j

(∆s)2
, uyy ≈

uk
i,j+1 − 2uk

i,j + ui,j−1k

(∆s)2
.

So the original differential equation

ut = c · (uxx + uyy)

becomes

uk+1
i,j − uk

i,j

∆t
= c ·

(
uk

i+1,j − 2uk
i,j + uk

i−1,j

(∆s)2
+

uk
i,j+1 − 2uk

i,j + uk
i,j−1

(∆s)2

)
.

Expressing uk+1
i,j from this equation yields

uk+1
i,j = uk

i,j + c · ∆t

(∆s)2
(
uk

i+1,j + uk
i−1,j − 4uk

i,j + uk
i,j+1 + uk

i,j−1

)
,

where ∆s = 1
n+1 and ∆t is set appropriately. We will consider this equation

for points (tk, xi, yj) with k ≥ 1 and 1 ≤ i ≤ n. For k = 0, the solution
is given by the initial value condition u(0, x, y) = f(x, y), and for i = 0 or
i = n + 1 the solution is given by the boundary conditions u(t, 0, y) = α0(y),
u(t, 1, y) = α1(y), u(t, x, 0) = β0(x) and u(t, x, 1) = β1(x).
In particular, the values for uk

0j , 0 ≤ j ≤ n + 1, uk
(n+1),j , 0 ≤ j ≤ n + 1,

uk
i0, 0 ≤ i ≤ n + 1, uk

i,(n+1), 0 ≤ i ≤ n + 1 remain constant for all k (that is
for all time points tk) and have to be set initially according to the boundary

50 V. Horak, P. Gruber

conditions.
The starting values u0

ij for all inner grid points are given by an initial value
condition.

The implementation on a single processor is quite straight forward:

double[n+2][n+2] u_old, u_new;
double c, delta_t, delta_s;
Initialize u_old, u_new with initial values and boundary
conditions;

while (still time points to compute) {
for (int i = 1; i <= n; i++) {

for (int j = 1; j <= n; j++) {
u_new[i, j] = u_old[i, j] + c * delta_t/delta_s^2 *

(u_old[i+1, j] + u_old[i-1, j] - 4*u_old[i, j] +
u_old[i, j+1] + u_old[i, j-1]);

} //end of for
} // end of for
u_old = u_new;

} // end of while

We can parallelize this algorithm by one dimensional data domain distribu-
tion along the y-axis among multiple processors. Each participating processor
will thus be responsible for a submatrix of the complete (discretized) unit
square. For the sake of simplicity, let’s assume that the number of proces-
sors m is a divisor of the number of spatial mesh points in each direction,
n + 2. Every processor will be responsible for a set of n+2

m · (n + 2) points;
this means in particular, processor number p will compute values of points
(x p·(n+2)

m

, yj), (x p·(n+2)
m

+1
, yj), . . . , (x p·(n+2)

m
+n+2

m
−1

, yj).

(Note that in the actual implementation there is some mechanism to handle
the case that m is not a divisor of n + 2.)
Evidently, some communication between the processors will be necessary, as
some values from neighboring processors are needed for computation in the
next iteration. In order to implement this structure, every process has two
local submatrices uold and unew of size (n+2

m +2)× (n+2). Thus, the first as
well as the last entry represents the values of a neighboring process but values
have only to be computed for all inner rows of this matrix.
We have to handle two exceptional cases here: for the first as well as for the
last processor there is either no left or no right neighbor. Thus, either the first
or the last row of the local matrix remains unused, which poses no problem.
Furthermore, either the first or the last row is given by boundary conditions

Parallel Numerical Solution of 2-D Heat Equation 51

and so there is no need to be updated with every iteration. We will handle
this exceptions by introducing two integer variables ifirst and ilast that define
the first and last row to be updated in each iteration. Usually, ifirst will be
set to 1, and ilast will be set to n+2

m , that is the second and last but one row
of the local matrices. For the first and last process, either ifirst or ilast are
reset accordingly.
The concept of the implemented algorithm is shown below. Note that the ac-
tual implementation needs some extensions in order to cope with the situations
that the number of rows is not a multiple of the number of processors.

double[(n+2)/m + 2, n+2] u_old, u_new;
double c, delta_t, delta_s;
int ifirst, ilast; //first/last index corresponding to x-coord.
int myid; // number of processor
double f(index i,index j);
// function that gives initial values for every point x_i;
// boundary conditions have to be considered for i,j = 0 or n+1

Set delta_s to 1/(n+2) and c, delta_t appropriately;
// Initialize u_old with initial values and boundary conditions;
// set and eventually reset ifirst and ilast
ifirst = 1;
ilast = (n+2)/m;
for (int i = ifirst-1; i <= ilast+1;i++) {
for (int j = 0; j <= n+1; j++){

uold[i, j] = f(myid*(n+2)/m + i -1, j);
}

}
if (myid == 0) {ifirst++;}
if (myid == m-1) {ilast--;}
while(still time points to compute) {
for (int i = ifirst; i <= ilast;i++) {

for (int j = 1; j <= n+1; j++) {
u_new[i, j] = u_old[i, j] + c * delta_t/delta_s^2 *

(u_old[i+1, j] + u_old[i-1, j] - 4*u_old[i, j]
+ u_old[i, j-1] + u_old[i, j+1]);

}} // end of for
if (myid < m-1) {

Send values for row u_{myid*(n+2)/m+(n+2)/m-1}=u_new[(n+2)/m]
to processor number myid + 1;
Get values for row u_{myid*(n+2)/m+(n+2)/m} from processor no.
myid + 1 and write value to u_new[(n+2)/m + 1];

52 V. Horak, P. Gruber

}
if (myid > 0) {

Send values for row u_{myid*(n+2)/m} = u_new[1]
to processor number myid - 1;
Get values for row u_{myid*(n+2)/m - 1} from processor number
myid - 1 and write value to u_new[0];

}
u_old = u_new;

} // end of while

3 Obtained Results

We will present the calculated solutions for the two dimensional Heat Equa-
tion ut = c · (uxx +uyy) with graphical representations. We will always set the
constant c to be 0.1. Furthermore, we will consider different numbers n + 2 of
spatial mesh points and different numbers p of processors.
Computed solutions for the values of the spatial mesh points (xi, yj) for a tem-
poral mesh point tk are independent on the number of processors used for its
calculation. Thus, we will present the numerical solutions with no relation to
the number of processors used, but compare the calculation time needed with
different numbers of processors used. In particular, we will analyze speedup
and efficiency on different hardware platforms. In this context, ”different pro-
cessors” actually means that the processes run indeed on different machines.
Note that for the Heat Equation not only the final (static) solution is usually
of interest, but also the way the temperature field changes from the initial
values as time proceeds. In other words, initial values for this problem are not
only chosen in order to minimize the effort to calculate the final solution, but
represent an essential part of the practical problem.
As different choices of n lead to different values for ∆s, it is also sensible to
choose different values for ∆t. In our case, we will always set ∆t = (∆s)2

4c in
order to guarantee stability.

In the example presented here, initial values of all inner grid points will be
set to zero. Boundary conditions are constant values at the edges.
Calculation will be stopped after 10000 iterations. We will list the computation
time required for various numbers of grid points and participating processors.

Testing the performance of the algorithm on the network of the Jožef Stefan
Institute, Ljubljana, we got the results listed in table 1. The computer cluster
of Jožef Stefan Institute is composed of 16 AMD Opteron 244 dual processors

Parallel Numerical Solution of 2-D Heat Equation 53

n = 3721 n = 34225 n = 319225 n = 3200512
p = 1 0.449 4.637 61.390 569.551
p = 2 0.867 3.133 38.105 410.633
p = 4 1.855 3.746 24.910 202.648
p = 8 2.949 4.203 20.090 108.445
p = 16 4.082 4.972 12.500 73.508
p = 32 5.664 5.930 9.695 52.438

Table 1: Computation time (Jožef Stefan Institute, Ljubljana)

n = 3721 n = 34225 n = 319225 n = 3200512
s1,2 0.518 1.480 1.611 1.387
s1,4 0.242 1.238 2.464 2.811
s1,8 0.152 1.103 3.056 5.252
s1,16 0.110 0.932 4.911 7.748
s1,32 0.079 0.782 6.332 10.862

Table 2: Calculated Speedup (Jožef Stefan Institute, Ljubljana)

with Linux Fedora 2 operating system. The processing nodes are connected
in a two dimensional toroidal 4-mesh by Gigabit Ethernet. Our reference
implementation uses the programing language C and MPICH implementation
of MPI library.

The resulting speedup (Ljubljana) for different values for n is listed in table
2; si,j denotes the speedup when using j processors instead of i. The speedup
is calculated as si,j = ti

tj
, where ti denotes the time consumed when using i

processors.

Doing the same tests on the ”Gaisberg”-cluster of the University of Salzburg,
Department of Scientific Computing, led to the results given in tables 3 and 4.
This cluster is composed of 36× 2 Athlon MP2800+ processors (2 GB RAM)
with a RedHat Linux operating system. The nodes are connected as a 6 × 6
SCI torus (≈ 250 MByte/sek).

A sample temperature field that was evaluated as the stable solution to
the Heat Equation can be seen in figure 1. For this illustrating example we
chose a field of 30 × 30 points with initial values randomly between -30 and
30. For boundary conditions we set the left border to 10 and the right one to
40. The points in front were chosen to be 30 and the points in the last line 50.

54 V. Horak, P. Gruber

n = 3721 n = 34225 n = 319225 n = 3200512
p = 1 1.771 22.631 226.414 2221.875
p = 2 1.090 9.809 114.949 1097.856
p = 4 0.798 4.640 59.113 557.677
p = 8 0.648 2.784 29.917 282.519
p = 16 0.641 1.857 13.302 145.271

Table 3: Computation time (University of Salzburg)

n = 3721 n = 34225 n = 319225 n = 3200512
s1,2 1.624 2.307 1.970 2.024
s1,4 2.219 4.877 3.830 3.984
s1,8 2.733 8.129 7.568 7.865
s1,16 2.762 12.185 17.021 15.295

Table 4: Calculated Speedup (University of Salzburg)

10

20

30

10

20

30

10
20
30
40
50

10

20

30

Figure 1: Solution of Heat Equation after 2478 iteration steps

Parallel Numerical Solution of 2-D Heat Equation 55

4 Conclusions

As the example presented in the previous section illustrates, the results of
this paper confirmed the thesis that good numerical approximations to the
solution of the two dimensional Heat Equation can be obtained using finite
difference method. One would expect this from theory; the outcome of our
work demonstrates, however, that good results can be obtained even with
comparably little effort on choosing suitable parameters, for example.

The project showed that finite difference algorithms are well suited for
parallel programming. The solution for the single processor case can be trans-
ferred with only minor modifications to the multi processor case. We discussed
this transformation in detail in the previous section ”Solution Method”.

A common purpose in using parallel algorithms is to reduce computation
time needed to calculate the solution. In our case, one can observe that us-
ing multiple processors does sometimes indeed increase the computation time
needed. A probable explanation might be that for this special problem, the
(additional) time needed for communication between the processors is almost
huge compared to the time needed to perform the actual computations. Actu-
ally, the processors need to synchronize after every iteration as they depend on
the values of neighboring processes for the next iteration. The computational
effort for each iteration is quite low, but a lot of iterations might be necessary.
The effect of using multiple processors in parallel is much more significant
when increasing the number of points to be evaluated, probably due to the
bigger computational effort each processor has to carry in every iteration.
This confirms the assumption that parallelizing an algorithm saves time only
if there has to be done a considerable amount of calculations in each iteration,
as otherwise too much time is needed for communication between participat-
ing processors in relation to the actual computational work being done.
For further studies, one could use this algorithm for more complex operations
in each iteration, such that the computation time needed for each iteration
gets bigger in relation to the time needed for communication. We would expect
that the parallel algorithm needs less time than the single processor-algorithm
in this case.

Acknowledgment

We would like to give a special thanks to Roman Trobec for his help and
encouragement during the whole work. We also want to thank the Institute
Jožef Stefan, Ljubljana, Slovenia, and the Department of Scientific Computing,
Salzburg, Austria, for granting access to their Computer Clusters as well as
Ernst Forsthofer and Stefan Jenisch for technical support.

56 V. Horak, P. Gruber

References

[1] M. T. Heath: Scientific Computing: An Introductory Survey, Second Edi-
tion, McGraw-Hill, New York 2001.

[2] M. Praprotnik, M. Sterk, R. Trobec: A new explicit numerical scheme for
nonlinear diffusion problems, Parallel numerics ’02 : theory and applica-
tions, Jozef Stefan Institute and University of Salzburg, 2002, 163-176.

[3] P. Trunk, B. Gersak, R. Trobec: Topical cardiac cooling - computer sim-
ulation of myocardial temperature changes, Comput. biol. med., vol. 33,
2003, 203-214.

[4] I. Foster: Designing and Building Parallel Programs: Concepts and Tools
for Parallel Software Engineering, Addison-Wesley Longman Publishing
Co., Inc, 1995

Supporting MPI collective communication on network processors

[5] Q. Zhang, C. Keppitiyagama, A. Wagner: Supporting MPI collective com-
munication on network processors, IEEE International Conference, 2002,
75 - 82

[6] MPI: A message passing interface, Supercomputing ’93. Proceedings, 15-
19 Nov. 1993, 878 - 883

[7] V. Makarov, R. Chapko: The Cayley transform and boundary integral
equations to an initial boundary value problem for the heat equation, 1999.
Proceedings of IVth International Seminar/Workshop, 20-23 Sept. 1999,
59 - 64

