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Selection of Good Lattice Points
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A Message Passing Interface (MPI) cluster has been used for an extensive
parallel search for rank-1 lattice rules using the LLL-Spectral Test [4, 9,
13]. Our parallel search implements the traditional normalization method
[6] as well as a new normalization strategy which is proposed in [3].
The resulting lattice parameters of the parallel searches are stored in a
database and distributed via a Web-based application server. We shortly
introduce the main concepts concerning lattice rules and the spectral
test. The concepts for parallelization are explained and some results of
exhaustive parallel searches for good lattice points conclude the article.

1 Introduction

The present article shows results of a large scale parallel parameter search
for Korobov lattice rules. As a quality criteria for the lattices we used the
spectral test with a new normalization strategy. The spectral test allows to
perform efficient quality assessments for lattice rules in high dimensions and
the parallel setup enables a search over a huge set of parameters. The paper
is organized in the following way. In the next sections we shortly introduce
the main concepts concerning lattice rules and the spectral test. In Section 2,
a detailed description of the parallel approach and the implemented search
algorithm is given. Section 3 contains some results of exhaustive parallel
searches for good lattice points with regard to different search dimensions
using the traditional as well as the new normalization strategy, and Section 4
concludes the article.
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1.1 Good Lattice Points and the Spectral Test

The method of good lattice points (GLP) also called Korobov lattice rules is
a central technique from the fields of Monte Carlo (MC) and quasi-Monte
Carlo (QMC) methods. Good lattice points are classical node sets for QMC
integration, defined by the Russian mathematician Korobov [10, 11]. For y ∈ R
let {y} = y − byc be the fractional part of y. Consider a vector ~a ∈ Zs, s ≥ 2.
A Korobov lattice rule is defined by the set

Pm := { ~xn : 0 ≤ n < m}, with ~xn :=
{

n·~a
m

}
, and modulus m ∈ N. (1)

In the following we will use the term Korobov lattice rule Pm only for
special vectors ~a defined by a parameter a with 1 < a < m and ~a :=
(1, a, a2, . . . , as−1), s ≥ 2, see [11].

The classical application of Korobov lattice rules is the approximate cal-
culation of integrals over Is, by the (quasi-) Monte Carlo quadrature rule∫

Is

f(~x) d~x ≈ 1
m

m−1∑
n=0

f(~xn), ~xn ∈ Pm. (2)

Furthermore, Korobov lattice rules with huge moduli and good lattice qual-
ity up to high dimensions provide parameters a and m for linear congruential
random number generators (LCGs) with good correlation behavior as a source
for MC applications [12, 16]. More recent lattice rules, so-called rank-r lattice
rules have been constructed by modular summation over multiples of different
vectors ~ai, 1 ≤ i ≤ r. Korobov lattice rules are a special case of rank-1 rules.
For more details on the theory of integration lattices and their applications in
MC and QMC see [16, 18, 17].

The choice of the parameter a heavily determines the distribution quality of
the lattice. The central goal for QMC integration is to find lattice parameters
a with optimal distribution behavior in different dimensions. For this task,
several equidistribution measures for an assessment of the lattice quality have
been constructed, see [16, 18, 2, 8].

For our purposes we use the spectral test, which can be computed very
efficiently and provides a reliable measure for lattice assessment [2]. This test
has extensively been applied to find good lattices for several MC and QMC
applications, e.g. see [12, 1, 4, 14].

Roughly spoken, the spectral test ds determines the maximal size of empty
slices between hyperplanes of a s-dimensional lattice and therefore measures
the distribution quality of such a point set [9, 13]. The spectral test is com-
puted using the Fincke-Pohst algorithm [5]. The magnitude of ds obviously
depends on the dimension and the size of the point set. To enable comparisons
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of spectral test results obtained in different dimensions, a normalized spectral
test Ss := d∗s/ds for which 0 ≤ Ss ≤ 1 was introduced [6]. The constants d∗s
are absolute lower bounds on ds, see [9, p. 105] for d∗s, s ≤ 8. Lower bounds
for dimension s > 8 have been proposed as well in order to compute Ss for
arbitrary dimensions [12].

A typical function measuring the “quality” of a lattice parameter a in
terms of the spectral test across dimensions is:

Mk := min
2≤s≤k

Ss . (3)

Fishman [6] was one of the first who applied this measure to find optimal
parameters a for m = 231 − 1 in order to get high quality linear congruential
random number generators satisfying a fixed threshold M6 ≥ 0.8. Recently the
measure Mk has been maximized for dimensions up to k = 32 in the context
of large scale parameter searches [12, 14].

In order to considerably speed up the computations, the LLL basis reduc-
tion algorithm [15] may be applied instead of the Fincke-Pohst algorithm as
an efficient and reliable approximation to the spectral test. Our experiments
use an approximation of this type. The high quality of the LLL-approximation
and the speedup with respect to the “original” spectral test have been shown
[4].

One problem with the measure Mk (3) is that the magnitudes of the sin-
gle normalized spectral tests Ss vary significantly for 1 ≤ s ≤ k, see [3] for
details and examples. In the latter paper a new normalization strategy was
suggested in order to make the measure Mk more balanced among the dimen-
sions. Therefore certain regression functions for normalization adjustment
were defined:

Ls := 0.000042s3 − 0.0027s2 + 0.067s− 0.097 (4)
Us := −0.000058s3 + 0.0036s2 − 0.059s + 1.09 (5)

Using these functions the spectral tests Ss were linearly transformed in di-
mension 2 ≤ s ≤ 24 and the transformed measure

S′
s = (Ss − Ls)/(Us − Ls) (6)

was used as a new normalized spectral test. For the computer experiments in
Section 2 we used both normalizations Ss and S′

s.
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2 Parallel Search for GLP

Although the spectral test was chosen as the method for assessing the quality
of a lattice, the search for GLPs can become computationally intensive. There-
fore, the approach of a parallel application using a cluster was chosen. We re-
strict our parameter searches to prime moduli m in the range 26 < m < 2256.
Parameters for ”small” moduli, e.g. m ≤ 231 − 1 may be applied as lattice
rules for QMC-integration, and the parameters for larger m as multipliers for
multiplicative LCGs with prime moduli. Therefore our main task is to find the
best GLP or multiplier a ∈ A where A is the set of all primitive roots modulo
m since this restriction provides parameters for multiplicative LCGs with full
period [16]. As a search criterion we use the measure Mk (3). Concerning the
normalization method for the spectral test, the ”old” normalization method
with Ss and the ”new” strategy using S′

s in (3) instead of Ss are distinguished.
The basic sketch of the search method is

• Find a primitive root e modulo m. Because m is restricted to be a
prime number e is a generator of the cyclic group Zm\{0} (i.e. the
multiplicative order of e modulo m is φ(m) = m− 1 where φ is Euler’s
totient function).

• Take relevant powers a = eε (mod m) for which gcd(ε, φ(m)) = 1 as
multipliers. The latter constraint ensures that a is also a primive root
modulo m.

• For each a in the search space and all dimensions up to dimension k,
calculate the LLL reduction, find the spectral test value ds, calculate
the defined normalization (”old” or ”new”), and find the minimum Mk

of the corresponding normalized spectral test values.

• Find the largest Mk value across all chosen multipliers in A.

For this purpose, a prototype of a distributed application for the parallel
search of GLPs has been developed.

2.1 Parallel Approach

For increasing efficiency, the PC-cluster Gaisberg of the High Performance
Computing Group1 of the department of Scientific Computing at the Uni-
versity of Salzburg has been used to conduct parallel searches. The cluster
consists of 25 identically equipped nodes as described in Table 1.

1Home page: http://hpc.sbg.ac.at (28.09.2004)
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Table 1: Cluster nodes.
Architecture PC

CPU 2 AMD Athlon MP 2800+ (2.1 GHz)
Memory 2 GByte

Operating System Red Hat Linux 7.3
Linux Kernel 2.4.20

Cluster Interconnect Scalable Coherent Interface (SCI) from Scali2
Programming Interface MPI from Scali

One master node controls the system setup and the distribution of the
search processes among the working nodes. The distributed Spectral test
application is started at the master node, together with corresponding ar-
guments in the form of command line options. A typical setup is to start two
instances of the search application per working node for maximum efficiency,
as each node provides two CPUs. The Spectral test application at the
master node determines important parameters for the search and distributes
their values to the search processes at the working nodes utilizing MPI. When
a search process finishes its partial search, it passes back its best result – con-
sisting of the best Mk value, its corresponding multiplier a, and the number
of executed search loops – to the master process, again by utilizing MPI. The
master process sorts the received results and prints out the detailed values.
Finally, the best result may be stored in a database.

The basic sequential activities of the Spectral test application at the
master node as well as at the working nodes is depicted in the Unified Modeling
Language (UML) activity diagram in Figure 1. In principle, there are two
modes of search operation: exhaustive search and random search. For an
exhaustive search, all exponents ε, for which eε (mod m) yields a primitive root
modulo m, are tested for being the best GLP for the modulus m. For a random
search, only a subset of those primitive roots are taken into consideration.

First of all, the MPI initialization and the check of the provided command
line options are accomplished. Next, the modulus m and optionally further
parameters are set. For getting a rough figure of time consumption, a time
measurement is started at all instances of the application. Then, a primitive
root e is determined by the master process by means of the following method.
First, Euler’s totient function φ(m) of the modulus m is computed. In the case
that m is prime, this yields φ(m) = m − 1. Next, the different prime factors
p1, . . . , pk of φ(m) are determined. This is done using a probabilistic integer

2Home page: http://www.scali.com (28.09.2004)
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Figure 1: Activity diagram of the distributed Spectral test application.
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prime-factorization method. Then, for every element e of Zm the values3

eφ(m)/pi (mod m), i = 1, . . . , k (7)

are computed. As soon as all of these k results are different from 1, a primitive
root e is found. Based on this first primitive root, all further primitive roots
a(ε, m) can be calculated as

a(ε, m) ≡ eε (mod m)⇐⇒ gcd(ε, φ(m)) = 1 . (8)

The total number of primitive roots for Zm is φ(φ(m)), if m is prime this
yields φ(m− 1).

Concerning the search itself, it loops through exponents of e, beginning
with the exponent α and ending with the exponent β. For an exhaustive
search, α is set to 1, and for a random search, α calculates as the largest ε
for which eε ≤ m plus a random value, depending on the value of m. If the
resulting value for α is even, it is incremented by 1. The two values for e
and α are distributed to the search processes using MPI. Before being able to
search, the upper limit of the exponent β has to be determined by all search
processes. For an exhaustive search, this value is simply set to the value of
m, for a random search, the doubled number of the wanted search loops is
added to α. In the case that no explicit search processes have been started,
the whole search may be executed by the master process in a single-threaded
approach. However, it is recommended to include several search processes
for the sake of division of work. Hence, when using explicit search processes,
each of them executes a partial search using a leapfrog method. When a search
process has finished its work, it sends back its best result to the master process
via MPI. The master process finally stops the global time measurement, sorts
the received results, calculates the spectral test values for the best global
multiplier and the corresponding values for Mk, k ∈ {8, 16, 24} with regard
to both normalization methods, and prints out detailed results. Finally, all
processes involved clean up the MPI environment.

2.2 Search Algorithm

The search algorithm for each search process is as follows. Assume, the mod-
ulus m, the search dimension k, and the normalization method for the nor-
malized spectral test value method have been defined. In the current version
of our Spectral test application we applied prime numbers m < 2256 and
dimensions k ∈ {8, 16, 24} and method ∈ {old, new}.

3e is initialized to 17.
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Algorithm 1: Search Loop.
WHILE ε < β DO

IF gcd(ε, m− 1) = 1 THEN
set multiplier a←− eε (mod m);
set minimum of normalized spectral test value Mk ←− 1;
FOR s←− 2 to k DO

do LLL reduction;
find spectral test value ds;
set Ss ←− d∗s/ds;
IF method is new THEN

set Ss ←− (Ss − Ls)/(Us − Ls);
ENDIF
IF Ss < Mk THEN

Mk ←− Ss;
ENDIF

ENDFOR
IF Mk > M∗

k THEN
M∗

k ←−Mk;
a∗ ←− a;

ENDIF
ENDIF
ε←− ε + γ;

ENDWHILE

In a first step, the values for the best global minimum Mk, denoted as M∗
k ,

and the best global multiplier a∗ are initialized to 0. Then the primitive root
e and a starting exponent α, which have been determined and distributed by
the master process, are set. Next, the ending exponent β for e, which also
represents the loop boundary, is determined and set by each search process.
Only those exponents ε are relevant for consideration which fulfill the condition
gcd(ε, m−1) = 1. Since m is a prime number, all even values of ε are irrelevant
and therefore may additionally be skipped. For this purpose the exponent
increment distance δ is set to 2 by default. Applying a leapfrog method across
the search processes, the exponent increment value γ for each search process
is

γ = δ · np (9)

where np is the total number of search processes. The starting exponent ε



Selection of Good Lattice Points Utilizing a Cluster 89

for each search process is defined by its rank4 rp:

ε = α + δ · (rp − 1) (10)

After initialization of important search parameters, the search process en-
ters the central search loop, which is described in Algorithm 1. As long as
the exponent ε is smaller than the ending exponent β, in a first step it has to
be checked if the new exponent yields another primitive root a when applied
as a = eε (mod m). If not, ε is incremented by γ and the next loop cycle is
executed. However, if ε yields another primitive root, a is set as the new mul-
tiplier for the modulus m, and the minimum of the normalized spectral test
values Mk is initialized to the value 1. For all dimensions s, 2 ≤ s ≤ k, first of
all the LLL reduction is calculated and the spectral test value ds is determined.
Next, the normalized spectral test value with regard to the old normalization
Ss is calculated. If the new normalization is desired, Ss is transformed to S′

s

according to the methods of the new normalization (see Sect. 1.1). If this
normalized or transformed value results in a new minimum, Mk is reassigned
accordingly. Finally, if the specific multiplier a yields a new highest global
value for Mk, then this pair of values (a,Mk) is taken as the new best global
pair of values (a∗,M∗

k ). Before entering the loop again, the value for ε is
increased by γ.

3 Results

First results of parallel searches for GLPs using the parallel setup described
in Section 2 are depicted in the following tables. The set of considered moduli
consisted of the largest primes smaller than 2l, for different values of l ≤ 256.

For the results in Table 2, exhaustive searches for moduli up to l ≤ 31 have
been considered. The search dimension was k = 16 with regard to the old
normalization. The main intention was to find improved multipliers compared
to the tables of L’Ecuyer [12] where exhaustive searches have been performed
only for l ≤ 26. The found improvements are shown as boldface values in the
table, together with their corresponding values for Mk, k ∈ {8, 16, 24} for both
normalization methods in the first two lines of each entry. For comparison,
the previous best multipliers taken from [12] together with their values for
M8 old and M16 old (L’Ecuyer used k ∈ {8, 16, 32}) are shown as well in line
three of each entry. For completeness, their accordant values regarding the
new normalization are also depicted in the last line of each entry.

Exhaustive searches for l ≤ 31 have also been conducted with regard to the
new normalization for dimension k = 24. The results are shown in Table 3.

4The rank of the first search process is 1.
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Table 2: Best multipliers a with regard to M16 old (exhaustive search).
m a M8 old M16 old M24 old

M8 new M16 new M24 new
227 − 39 66100098 0.674364 0.674364 0.671350

0.728434 0.728434 0.563524
3162696 0.702330 0.672640

0.751560 0.699585
228 − 57 230195011 0.692705 0.680449 0.680449

0.734185 0.717931 0.529734
140853223 0.704620 0.673530

0.723500 0.682391
229 − 3 507054386 0.706185 0.694721 0.664672

0.757498 0.704076 0.545287
530877178 0.673520 0.670880

0.719956 0.593768
230 − 35 790126461 0.680384 0.680384 0.680384

0.738809 0.726937 0.586649
295397169 0.683230 0.674200

0.749031 0.690916
231 − 1 1257019355 0.690019 0.683158 0.683158

0.705018 0.705018 0.536430
784588716 0.658850 0.653880

0.689715 0.578044
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Figure 2: Spectral test behaviors of two different multipliers and moduli.
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Figure 2 demonstrates the spectral test behaviors of the best found multipliers
for two different moduli. The left graphics shows the behavior of the best
multiplier for modulus m = 210 − 3. Concerning the old normalization, this
multiplier yields a M24 old value of 0.663168. Looking at the S′

s values it can
be seen that the shape of the curve for higher dimensions strongly decreases
because of the intense effects of the normalization adjustments, resulting in a
rather low value for M24 new of only 0.534339. The special shape of the graph
for larger dimensions results from the fact that this modulus and therefore
the number of points is very small. Hence for all dimensions 10 ≤ s ≤ 24,
the corresponding lattices consist of four hyper-planes only resulting in equal
non-normalized spectral test values ds.

Table 3: Best multipliers a with regard to M24 new (exhaustive search).
m a M8 new M16 new M24 new

M8 old M16 old M24 old
210 − 3 65 0.726822 0.703401 0.534339

0.690694 0.663168 0.663168
211 − 9 1072 0.597302 0.597302 0.597302

0.599080 0.599080 0.599080
212 − 3 500 0.665212 0.665212 0.665212

0.642591 0.642591 0.642591
213 − 1 5900 0.663222 0.663222 0.663222

0.648430 0.648430 0.648430
214 − 3 1543 0.657914 0.657914 0.657914

0.633986 0.633986 0.633986
215 − 19 7912 0.726093 0.726093 0.726093

0.673006 0.673006 0.673006
216 − 15 4623 0.662787 0.662787 0.662787

0.637396 0.637396 0.637396
217 − 1 51308 0.728530 0.690387 0.688453

0.678984 0.662301 0.662301
218 − 5 152508 0.686988 0.686988 0.686988

0.663751 0.661700 0.661700
219 − 1 37698 0.711975 0.711975 0.707139

0.667797 0.667797 0.667797
220 − 3 516672 0.668804 0.668804 0.668804

0.644146 0.644146 0.644146
221 − 9 1531968 0.710673 0.710673 0.710673

0.678134 0.674078 0.674078
222 − 3 1135380 0.686095 0.686095 0.686095

0.672307 0.672307 0.672307
223 − 15 2115063 0.706835 0.699275 0.699275

0.660804 0.660804 0.660804
224 − 3 926716 0.696865 0.678597 0.678597

0.655506 0.655506 0.655506
(continued on next page)
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Table 3: Best multipliers a with regard to M24 new (continued).
m a M8 new M16 new M24 new

M8 old M16 old M24 old
225 − 39 6557845 0.716337 0.702975 0.702975

0.671214 0.662974 0.662974
226 − 5 27830235 0.746356 0.721056 0.721056

0.704761 0.696578 0.696578
227 − 39 33298047 0.741795 0.732958 0.719319

0.682116 0.682116 0.682116
228 − 57 19257650 0.713572 0.713572 0.713572

0.664384 0.664384 0.664384
229 − 3 218346125 0.713048 0.713048 0.713048

0.669119 0.669119 0.669119
230 − 35 353791604 0.710906 0.710906 0.710906

0.664195 0.664195 0.664195
231 − 1 1690867642 0.700438 0.697860 0.697860

0.661083 0.660640 0.660640

The right graphics in Figure 2 shows the spectral test behaviors of the best
multiplier for modulus m = 226 − 5. The course of the graph of the Ss values
increases for higher dimensions resulting in high values for S′

s as well. Roughly
spoken, if an achieved Ss value lies in the lower area of the corresponding
spectral test distribution used for the new normalization (cf. Sect. 1.1), then
the resulting S′

s value will be adjusted to a value lower than Ss, and if the
Ss value lies in the upper area the new normalization results in S′

s > Ss.
Generally, a parameter search using the new normalization method enables
equally stable spectral test behavior with respect to a given threshold across
low and high dimensions.
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Figure 3: Search times of exhaustive searches with regard to M24 new.
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Figure 3 shows the time consumption for each search. The shown values
include both the serial and the parallel parts of the searches. Note that the
serial part is only a minor fraction within a measured time. As the cluster may
occasionally also be used by other research groups, the environment was not
guaranteed to be unloaded during the searches. The figure shows the general
trend that with an increasing value of modulus m the search time increases
non-linearly. Therefore exhaustive searches for higher moduli (l > 31) have
not been conducted.

For selected values of l ≥ 32 random searches with 5 million search loops
for each modulus have been conducted for dimension k = 24 with regard to the
new normalization. The results of these searches are available electronically
at the Spectral Test Server [7].

4 Conclusions

We used the spectral test with a new normalization strategy [3] to perform
a large scale parallel parameter search for Korobov lattice rules. The new
normalization method was chosen to identify parameters with equally stable
behavior across low and high dimensions. A selection of the parameters from
this experiment is given in the article. The collection of all results of the
conducted searches is also available electronically at the Spectral Test Server
[7]. This Web-based application server offers interactive access to a database,
which contains detailed calculation results for many lattice rules, information
about scientists working in the field of MC&QMC as well as many publication
references. The server further provides the possibility to execute GLP search
tasks according to the search algorithm described in Section 2.2 directly via a
Web-browser in a single-threaded approach.
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