
Parallel Numerics ’05, 109-118 M. Vajteršic, R. Trobec, P. Zinterhof, A. Uhl (Eds.)

Chapter 5: Optimization and Classification ISBN 961-6303-67-8

A parallel version
of the D-Ant algorithm

for the Vehicle Routing Problem

Karl F. Doerner1,∗, Richard F. Hartl1, Maria Lucka2

1 Institute for Management Science, University of Vienna,
Brünner Strasse 72, A-1210 Vienna

2 Institute of Scientific Computing, University of Vienna,
Nordbergstrasse 15/C/3, A-1090 Vienna

In this paper we study a parallel implementation of the D-Ant algorithm
developed by Reimann, Doerner and Hartl [9] for solving the Vehicle
Routing Problem. The main idea in this algorithm is to speed up the
search by letting the ants solve only sub-problems rather than the whole
problem. This algorithm is well suited for parallelization. We propose a
mixed parallelization strategy which combines fine-grained with coarse-
grained parallelism.

1 Introduction

In this paper we study a mixed parallelization strategy, which is a combina-
tion of coarse-grained and fine-grained parallelization for the D-Ant algorithm
applied to the Vehicle Routing Problem. The Vehicle Routing Problem (VRP)
involves the construction of a set of vehicle tours starting and ending at a single
depot and satisfying the demands of a set of customers, where each customer
is served by exactly one vehicle and neither vehicle capacities nor maximum
tour lengths are violated. Therefore no efficient exact solution methods are
available, and the existing solution approaches are of a heuristic nature. In
the standard Savings based Ant System [8] one population of Ants for solving
the whole problem instance is used. This is reasonable for only small problem

∗Corresponding author. E-mail: karl.doerner@univie.ac.at



110 K. F. Doerner, R. F. Hartl, M. Lucka

instances. The runtime for large problem instances is prohibitive and the so-
lution quality decreases. Therefore, the main idea is to split up large problems
into a number of smaller problems that can be solved both more effectively
and more efficiently. We use an own population of ants for each sub-problem.
This algorithm works better than the standard Savings based Ant System.
Extensive computational results were published in [9]. The design of the algo-
rithm is well suited for the development of a parallel variant. Recently some
possible parallelization strategies for ACO have been proposed,which can be
classified into fine-grained and coarse-grained strategies [5]. In fine-grained
parallelization strategies usually several artificial ants of a colony are assigned
to each processor and therefore frequent information exchange between the
small sub-colonies of ants (i.e. an information exchange between the pro-
cessors) takes place [4]. Coarse-grained parallelization schemes run several
colonies in parallel. This strategy is also referred to as multi colony approach.
The information exchange among colonies is done at certain intervals or num-
bers of iterations [1].

The outline of the remainder of this paper is as follows. In the next section
we give a problem formulation of the VRP. In Section 3 we repeat the Savings
based Ant System from [8]. In Section 4 we repeat the decomposition for
Vehicle Routing Problems from [9]. We will present results for the speedup
and efficiency of our mixed parallelization strategy in section 5 before we
conclude with an outlook on future research.

2 Problem Formulation of the Vehicle Routing Prob-
lem

The VRP can be formulated in the following way. This formulation is closely
related to the formulation presented in [3]. Let G = (V,E, c) be a complete
graph, with n+1 nodes (v0, ..., vN ) corresponding to the customers i = 1, ..., N
and the depot i = 0, and the edge set ((vi, vj) ∈ E ∀ vi, vj ∈ V ). With each
edge (vi, vj) ∈ E is associated a non-negative weight cij , which refers to the
travel costs between nodes vi and vj and a non-negative weight tij , which refers
to the distance between the nodes. Furthermore, with each node vi, i = 1, ..., N
is associated a non-negative demand di, which has to be satisfied, as well as a
service time δi. The service time at the depot is set to δ0 = 0. At the depot
a fleet of size K is available, where each vehicle has a capacity of Qk and the
maximum driving time for each vehicle is T k.



A Parallel Version of the D-Ant Algorithm for the VRP 111

Let xk
ij denote the binary decision variables with the following interpreta-

tion:

xk
ij =


1 if vehicle k visits node vj

immediately after node vi

0 otherwise.

Then the objective can be written as

minimize
N∑

i=0

N∑
j=0

K∑
k=1

cijx
k
ij (1)

under the following restrictions

N∑
i=1

N∑
j=1

xk
ijdi ≤ Qk 1 ≤ k ≤ K (2)

N∑
i=0

N∑
j=0

xk
ij(tij + δi) ≤ T k 1 ≤ k ≤ K (3)

N∑
i=0

xk
ij −

N∑
l=0

xk
jl = 0 1 ≤ k ≤ K, 0 ≤ j ≤ N (4)

N∑
i=0

K∑
k=1

xk
ij =

{
1 1 ≤ j ≤ N
K j = 0

(5)

∑
i∈S

∑
j∈S

xk
ij ≤ S − 1 ∀S ⊆ {1, ..., N}, 1 ≤ k ≤ K (6)

xk
ij ∈ {0, 1} 1 ≤ k ≤ K, 0 ≤ i, j ≤ N (7)

The objective (1) is to minimize the total travel costs. Constraints (2)
ensure that no vehicle is overloaded. Constraints (3) require that the maximum
driving time for each vehicle is respected. Constraints (4) ensure that if a
vehicle visits a customer it also leaves the customer. Constraints (5) require
that all customers are visited once, and that the depot is left K times. Subtour
elimination is ensured through constraints (6). Finally, constraints (7) are the
usual binary constraints.



112 K. F. Doerner, R. F. Hartl, M. Lucka

3 Savings based ACO algorithms for the VRP

The Savings based ACO algorithm published in [8] and repeated here mainly
consists of the iteration of three steps: (1) generation of solutions by ants
according to private and pheromone information; (2) application of a local
search to the ants’ solutions, and (3) update of the pheromone information.
Solutions are constructed based on the well known Savings Algorithm. In this
algorithm the initial solution consists of the assignment of each customer to
a separate tour. After that for each pair of customers i and j the following
savings values are calculated:

sij = di0 + d0j − dij , (8)

where dij denotes the distance between locations i and j, the index 0 denotes
the depot, and sij represent the savings of combining two customers i and j
on one tour contrary to serving them on two different tours. In the iterative
phase, customers or partial tours are combined by sequentially choosing fea-
sible entries from the list of saving values. A combination is infeasible if it
violates either the capacity or the tour length constraints. The decision mak-
ing about combining customers is based on a probabilistic rule taking into
account both savings values and the pheromone information. Let τij denote
the pheromone concentration on the arc connecting customers i and j telling
us how good the combination of these two customers i and j was in previous
iterations. In each decision step of an ant, we consider the k best combinations
still available, where k is a parameter of the algorithm which we will refer to as
‘neighborhood’ below. Let Ωk denote the set of k neighbors, i.e. the k feasible
combinations (i, j) yielding the largest savings, considered in a given decision
step, then the decision rule is given by equation (9).

Pij =


sβ
ijτα

ij∑
(h,l)∈Ωk

sβ
hl

τα
hl

if (i, j) ∈ Ωk

0 otherwise.

(9)

In (9), Pij is the probability of choosing to combine customers i and j on one
tour, while α and β bias the relative influence of the pheromone trails and
the savings values, respectively. This algorithm results in a (sub-)optimal set
of tours through all customers, once no more feasible savings values are avail-
able. The used pheromone update rule was proposed in [2] and its pheromone
management centers around two concepts borrowed from Genetic Algorithms,
namely ranking and elitism to deal with the trade-off between exploration and
exploitation. In [8] this paradigm was used for solving the VRP. Thus, we will



A Parallel Version of the D-Ant Algorithm for the VRP 113

just briefly depict the pheromone update scheme here. Let 0 ≤ ρ ≤ 1 be the
trail persistence and E the number of elitists. Then, the pheromone update
scheme can formally be written as

τij := ρτij +
E−1∑
r=1

∆τ r
ij + E∆τ∗ij (10)

First, the best solution found by the ants up to the current iteration is updated
as if E ants had traversed it. The amount of pheromone laid by the elitists
is ∆τ∗ij = 1/L∗ if (ij) belongs to the best solution so far, 0 otherwise, where
L∗ is the objective value of the best solution found so far. Second, the E − 1
best ants of the current iteration are allowed to lay pheromone on the arcs
they traversed. The quantity laid by these ants depends on their rank r
as well as their solution quality Lr, such that the r-th best ant lays ∆τ r

ij =
(E−r)/Lr on the arcs it traverses. Arcs belonging to neither of those solutions
just face a pheromone decay at the rate (1 − ρ), which constitutes the trail
evaporation. A solution obtained by the above mentioned procedure can then
be subjected to a local search in order to ensure local optimality. In our
algorithms we sequentially apply the swap neighborhood between tours to
improve the clustering and the 2-opt algorithm within tours to improve the
routing.

4 Decomposing the VRP

The D-Ant algorithm published in [9] is repeated in the following section. The
idea is based on Taillard’s decomposition algorithm ([10]).

Initially an Savings based Ant System solves the problem for a given num-
ber of iterations. Given the best found solution so far our algorithm determines
for each route of this solution the center of gravity. We then cluster these route
centers using the Sweep algorithm as proposed by Gillett and Miller [6]. Each
of the resulting clusters is then solved independently by applying our Savings
based Ant System for a given number of iterations (see Figure 1).

After all sub-problems have been solved we re-assemble the global solution
and update the global pheromone information and if applicable the global
best solution. The steps described above are repeated until a pre-specified
time limit is reached. The detailed pseudocode is given below.

The main notion with respect to the communication between the differ-
ent processes is master pheromone information. In fact, we use one global
memory for our algorithm. The communication between the Ant Systems
for the sub-problems and the Ant System for the master process is based on



114 K. F. Doerner, R. F. Hartl, M. Lucka

Figure 1: Solve the sub-problems with the Savings based Ant System

two important components. The first important component is, each Ant Sys-
tem which solves a sub-problem is using the associated part of the master
pheromone information. In other words, each sub-problem receives only those
parts of the master pheromone information necessary to solve its part of the
problem. The sub-problems then change this pheromone information locally
as they iteratively solve their instances. The second important component
is, after all the sub-problem have been solved, the corresponding processes
return the best found solution. The solution for the problem is computed
and compared with the previous best found solution. If an improvement was
achieved, the best found solution is updated and pheromone reinforcement in
the master pheromone information occurs. Otherwise, only negative reinforce-
ment in terms of pheromone evaporation is applied to the master pheromone
information.

5 Parallelization and Computation Experiments

A common procedure for implementing parallel programs (especially on dis-
tributed memory machines) is to employ low level message passing systems
such as MPI ([7]) in conjunction with a standard sequential language such as
Fortran or C. With this approach explicit communication calls for non local
data access have to be inserted into the sequential program.

Note that our goal in parallelization of the ACO algorithm is to improve
the execution time of the algorithm without altering its behavior. Possible
improvements of ACO solution quality through the exploitation of parallelism
will be analyzed in another project and are not discussed in this article.



A Parallel Version of the D-Ant Algorithm for the VRP 115

procedure D-Ants
begin

Read the input data;
Initialize the system (parameters and global pheromone matrix);
while a pre-specified stopping criterion is not met do

for a pre-specified number of iterations do
Solve the complete problem using the Savings based Ant System;

end
for the best solution found so far do

Compute the center of gravity of each route;
end
Decompose the best solution into a pre-specified number of subproblems
by applying the Sweep algorithm to the centers of gravity;
for each subproblem do

for a pre-specified number of iterations do
Solve the subproblem with the Savings based Ant System by
using the relevant part of the global pheromone matrix locally;
If applicable, update best solution; end

end
Update the global memory (global pheromone matrix);

end
end

Figure 2: Pseudocode of the algorithm

We have parallelized the Savings based Ant System on the basis of individ-
ual ants. The results are published in [4]. In this section we report the results
when using a mixed parallelization strategy for the D-Ant algorithm. We ex-
tended the fine-grained parallelization variant with a coarse-grained strategy.
Then, the subpopulations of the decomposed problem are executed in parallel.

We have enriched our C implementation with MPI statements to exploit
the parallelism in the algorithm.

5.1 Fine-grained approach

The input data are read by the root process and distributed to other processes.
The different processes independently initialize the algorithm and compute
the distance matrix. Each process constructs solutions, where the number
of constructed solutions by one process is computed by the number of ants
divided by the number of processes. As soon as the solutions of all processes
are available the E-best solutions are searched and broadcasted to the root
process. The reduction operation for the determination of the E-best ants is
executed – then the solutions of the E-best ants are broadcasted from the root



116 K. F. Doerner, R. F. Hartl, M. Lucka

process to the different processes and the pheromone matrices are updated in
each process.

5.2 Coarse-grained approach

The computation of several sub-arrays brings possibility for calculating them
in parallel. The user can influence performance by setting the number of sub-
problems that should be processed in parallel. Let us denote SUB the number
of sub-arrays and SP the number of the subarrays that will be processed in
parallel. The number SP must be of course smaller than the number SUB
determining the number of sub-problems. After the parallel processing is
initiated, the number of all processes divided by SP provides the number of
processes available for the fine-grained parallelism of every sub-array.

5.3 Numerical Results

The problem instances used for our computational study are the larger Christo-
fides instances [3]. All of the instances feature one central depot. The in-
stances are capacity constraint as well as tour length constraint. Service times
are equal for all customers and set to zero. The sizes of the instances vary
between 150 and 199 customers. We use the following parameters: itmaster de-
notes the number of iterations for solving the complete problem, itsub denotes
the number of iterations for solving the sub-problems, ittot denotes the total
number of iterations SUB denotes the number of sub-problems For the results
presented below we used the following settings: itmaster = 1, itsub = 150. The
total number of iterations was set to twice the number of customers. Finally,
an important parameter is the number of sub-problems. For the computa-
tional study presented below we have partitioned each problem instance into
SUB = 2 sub-problems. We chose to stick to the parameter values for the
D-Ant that were found to be favourable [9]. The experiments with the paral-
lel version of the D-Ants were run on a state-of-the art medium-sized Beowulf
cluster comprised of 16 quad-board PCs equipped with Pentium IV processors
and connected via Fast-Ethernet. Table 2 reports detailed results in runtime
for the instances. The instances 4 and 9 have 150 customers and the instances
5 and 10 have 199 customers.

Table 1 summarizes our computational results. The number of used pro-
cessors (P ) is varied. The SUB indicates if the sub-problems are executed as
one process sequentially (SUB = 1) or as two different processes (SUP = 2).
Furthermore, the average time and the average solution quality is reported.
It is obvious that for all the different settings we get about the same solution
quality. Also the speed-up and the efficiency for using 1, 2, 4 and 8 proces-



A Parallel Version of the D-Ant Algorithm for the VRP 117

sors are reported. When we use 8 processes we have a slightly better speed
up (3.85) and efficiency (0.48) by execution the sub-problems in parallel than
executing the sub-problems sequentially and using all the 8 processors in a
parallel execution of the population of ants (speedup 3.30 – efficiency 0.41).

P SUB SP Avg. T ime Avg. Solution SpeedUp Efficiency

1 2 1 5,159.44 1,252.36 - -
2 2 1 3,893.26 1,254.67 1.33 0.66
4 2 1 2,293.68 1,252.64 2.25 0.56
8 2 1 1,561.85 1,253.30 3.30 0.41
2 2 2 4,335.37 1,259.40 1.19 0.60
4 2 2 2,216.50 1,252.08 2.33 0.58
8 2 2 1,338.67 1,252.31 3.85 0.48

Table 1: Resume of the results for different configurations

6 Conclusions

In this paper we reported the efficiency and the speedup for the paralleliza-
tion of the D-Ant algorithm. We are currently extending our endeavors con-
cerning parallel implementations of ACO algorithms to more sophisticated
(asynchronous) models of parallelization. The aim is to come up with more
intelligent strategies that will lead to either better efficiency or better effective-
ness (or possibly both). Also, the speed-up obtainable through parallelization
should be highly important for solving larger problem instances in real time.

P SUB SP instance 4 instance 5 instance 9 instance 10
1 2 1 1,758.14 7,212.14 2,185.82 9,481.65
2 2 1 1,390.54 5,593.39 1,660.97 6,928.13
4 2 1 879.77 3,281.14 1,055.36 3,958,44
8 2 1 720.75 2,214.93 808.93 2,502.81
2 2 2 1,455.72 6,987.41 1,664.09 7,234.26
4 2 2 797.20 3,411.90 940.94 3,715.97
8 2 2 529.52 1,910.34 621.54 2,293.30

Table 2: Detailed results. P denotes the number of parallel processes, SP
means a number determining the number of sub-problems that were processed
in parallel.



118 K. F. Doerner, R. F. Hartl, M. Lucka

Acknowledgements

We would like to thank Elisabeth Mühlböck for running the numerical tests.
The authors are grateful to Guenter Kiechle and Marc Reimann for providing
part of the code. This work was supported by the Special Research Program
SFB F011 ”AURORA” of the Austrian Science Fund FWF.

References

[1] Benkner, S., Doerner, K. F., Hartl R. F., Kiechle, G. and Lucka, M. (2005). Com-
munication Strategies for Parallel Cooperative Ant Colony Optimization on Clusters
and Grids to appear: Lecture Notes in Computer Science, Conference Proceedings of
PARA04.

[2] B. Bullnheimer, R. F. Hartl, and Ch. Strauss. New Rank Based Version of the Ant Sys-
tem a computational study. Central European Journal of Operations Research, 7(1):25–
38, 1999.

[3] Christofides, N.; Mingozzi, A. and Toth, P.. The vehicle routing problem. In:
Christofides, N., Mingozzi, A., Toth, P. and Sandi, C. (Eds.): Combinatorial Opti-
mization. Wiley, Chicester (1979).

[4] K. F. Doerner, R. F. Hartl, G. Kiechle, M. Lucka, M. Reimann. Parallel Ant Systems
for the Capacitated Vehicle Routing Problem.In: Evolutionary Computation in Combi-
natorial Optimization: 4th European Conference, EvoCOP 2004, LLNS 3004, Lecture
Notes in Computer Science, pp. 72–83, Coimbra, Portugal, April 5-7, 2004. Springer.

[5] M. Dorigo, T. Stuetzle. The Ant Colony Optimization Metaheuristic. Algorihtms, Ap-
plications, and Advances. In: F. Glover, and G. A. Kochenberger, editors, Handbook of
Metaheurisitcs, pp. 251–285, January 2003. Kluwer.

[6] Gillett, B. and Miller, L. (1974). A heuristic algorithm for the vehicle dispatch problem.
Operations Research, 22, 340–349.

[7] MPI: A Message-passing Interface Standard Version 1.1.MPI Forum, 1995.

[8] Reimann, M., Stummer, M. and Doerner, K. (2002). A Savings based Ant System for the
Vehicle Routing Problem. In: Langdon, W. B. et al. (eds.): Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2002), Morgan Kaufmann, San
Francisco, 1317–1325.

[9] Reimann, M., Doerner, K. F. and Hartl, R. F. D-Ants. Savings Based Ants divide and
conquer the vehicle routing problem. Computers & Operations Research, Vol. 31 (4),
pp. 563–591.

[10] Taillard, E. D. (1993). Parallel iterative search methods for vehicle routing problems.
Networks 23 661–673.


