
School of Telematics & Network Engineering http://www.cti.ac.at/

Observations on Data Distribution and Scalability of Parallel
and Distributed Image Processing Applications

Roman Pfarrhofer and Andreas Uhl
uhl@cosy.sbg.ac.at

R. Pfarrhofer & A. Uhl 1 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Outline

• Introduction

• MATLAB Custer Computing: MDICE

• Distributed Search in Image Databases

– Template Matching
– Experimental Settings
– Experimental Results

• Conclusions

R. Pfarrhofer & A. Uhl 2 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Introduction

• Creation, processing, and management of visual data require an enormous
computational effort, often too high for single processor architectures.

• Inherent data parallelism in visual data makes image and video processing
natural application areas for parallel computing.

• “Workshop on Parallel and Distributed Image Processing, Video Processing,
and Multimedia (PDIVM)” @ IPDPS

• Software based approaches are becoming more popular in this area because of

– performance increase of general-purpose processors (media processors)
– rapid evolution of multimedia techniques which has dramatically shortened

the time available to come up with a new hardware design for each improved
standard or technique.

R. Pfarrhofer & A. Uhl 3 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Cluster Computing and MATLAB

• Emerge of cluster computing → a cheap and highly available and yet powerful
architecture for image processing applications

• MATLAB provides users with easy access to an extensive library of high quality
numerical routines which can be used in a dynamical way and may be easily
extended and integrated into existing applications.

• MATLAB in HPC

– Developing a high performance interpreter (MPI/PVM based communication
routines) or coarse grained parallelization by splitting up work among multiple
MATLAB sessions.

– Calling high performance numerical libraries (e.g. SCALAPACK)
– Compiling MATLAB to another language (e.g. C, HPF)

R. Pfarrhofer & A. Uhl 4 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

MDICE

• MDICE: MATLAB-based DIstributed Computing Environment

• Goal: in contrast to previous approaches the goal is to get along with a single
MATLAB client (instead of a MATLAB client at each participating compute
node)

• The main idea was to change the client program in a way that it can be
compiled to a standalone application.

• The compiled client program library and the datasets for the job are sent to the
compute node, where a background client service is running with low priority.

• For this reason the involved client machines may be used as desktop machines
by other users during the computation.

R. Pfarrhofer & A. Uhl 5 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Client-Server Concept of MDICE

R. Pfarrhofer & A. Uhl 6 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Template Matching

• An image database is searched for a
specific template.

• A varying amount of noise is added
the template and rotated versions
are created (partially at the server).

• The templates are duplicated on
each client.

• At the client, for all templates in
the search area a normalized cross-
correlation is computed and the
highest value is recorded.

R. Pfarrhofer & A. Uhl 7 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Data Distribution

• The image database is partitioned into a user-selected

number of jobs and the jobs (i.e. images or image tiles)

are distributed to be processed independently on the

clients.
• If the number of jobs exceeds the number of images,

these need to be tiled accordingly.
• To guarantee correct results the images need to be

distributed in a redundant way where the size of the

overlap has to be the width of the template−1 in each

dimension.

• Alternative: exchange the required border data among

the clients → high communication cost, especially on

a cluster

R. Pfarrhofer & A. Uhl 8 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Experimental Settings

• Computational task is split into a certain number of equally sized jobs N
to be distributed by the server among the M clients in a dynamic fashion
(“asynchronous single task pool method”)

• Server machine (1.99 GHz Intel Pentium 4, 504 MB RAM) and client machines
(996 MHz Intel Pentium 3, 128 MB RAM), both types under Windows XP
Prof.

• 100 MBit/s Ethernet network.

• Sequential referece times have been achieved on a 996 MHz client machine
with a compiled (not interpreted) version of the application to allow a fair
comparison

• We use MATLAB 6.5.0 with the MATLAB compiler 3.0 and the LCC C
compiler 2.4.

R. Pfarrhofer & A. Uhl 9 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Experimental Results I: Speedup with Varying Problem Size

• We notice plateaus resulting from load distribution problems (e.g., 16 jobs may not be

efficiently distributed among 14 clients)

• Lower speedup and less pronounced plateaus are exhibited in case of smaller problem size

(initial communication phase dominates other problems).

2 4 6 8 10 12 14 16
1

2

3

4

5

6

7

8

9

10

11

12

Number of worker−nodes

S
pe

ed
up

2 256x256 images (16 jobs)
4 256x256 images (16 jobs)
8 256x256 images (16 jobs)
8 256x256 images (48 jobs)

• The reason for the increased speedup for more data

is the decreasing amount of overlapping data required

for redundant tiling (e.g. 2 images are tiled into

8 tiles each whereas 8 images are cut into halves

only) → smaller amount of overlapping data reduces

computation effort. The reason is NOT improved

computation/communication ratio !

• 48 jobs instead of 16 jobs allow better balanced load

BUT a higher amount of overlapping data and the

associated computations → performance is lower.

R. Pfarrhofer & A. Uhl 10 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Experimental Results II: Time Demand with Varying Number
of Jobs (10 clients, 8 5122 Images)

• No improved performance for a larger number of jobs due to improved load balancing (more

jobs cause a large amount of overlapping data in the tiling → higher amount of overall

computations).
• The number of jobs devided by the number of images in the database gives the number of

tiles required per image. If the resulting number is a prime, the image is tiled along one

dimension only which results in a higher amount of overlapping data as in case of tiling along

both dimensions.

8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

1200

1300

1400

1500

1600

1700

1800

1900

2000

Number of jobs

T
im

e 
in

 s
ec

on
ds

• Poor performance is especially exhibited for 24, 40, 56, 88,

and 104 jobs (which corresponds to 3, 5, 7, 11, and 13 tiles

per image, respectively).

• Using 24 jobs as compared to 40 jobs should be faster due to

the lower amount of overlapping data. The 40 job setting is

faster (perfect load distribution compensates higher amount

of computation and communication)

R. Pfarrhofer & A. Uhl 11 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Experimental Results III: Execution Visualization

0 200 400 600 800 1000 1200 1400

1

2

3

4

5

6

7

8

9

10

Time in seconds

W
or

ke
r

Doing nothing
Communicating
Processing

(a) 24 jobs on 10 clients

0 200 400 600 800 1000 1200 1400

1

2

3

4

5

6

7

8

9

10

Time in seconds

W
or

ke
r

Doing nothing
Communicating
Processing

(b) 40 jobs on 10 clients

R. Pfarrhofer & A. Uhl 12 Carinthia Tech Institute & Salzburg University



School of Telematics & Network Engineering http://www.cti.ac.at/

Conclusions

1. Increasing the number of jobs (i.e. image tiles to be processed) does not
only increase the communication amount but also the computational effort is
increased since the amount of overlapping data grows. This has two major
implications:

(a) Increasing the number of jobs to achieve better balanced load might be
contraproductive and result in worse performance.

(b) Increasing the number of processing elements when keeping the problem size
fixed does not lead to better performance at some point (poor scalability).

2. The question how the image data is partitioned is crucial with respect to
performance in case the application involves neighbourhood operations. Simple
partitioning along one dimension only (row partitioning) is shown to perform
significantly worse as compared to tiling both image dimensions.

R. Pfarrhofer & A. Uhl 13 Carinthia Tech Institute & Salzburg University


