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ABSTRACT 

We present a new approach to detection of forgeries in digital images under the assumption that either the camera that 
took the image is available or other images taken by that camera are available. Our method is based on detecting the 
presence of the camera pattern noise, which is a unique stochastic characteristic of imaging sensors, in individual 
regions in the image. The forged region is determined as the one that lacks the pattern noise. The presence of the noise 
is established using correlation as in detection of spread spectrum watermarks. We proposed two approaches. In the first 
one, the user selects an area for integrity verification. The second method attempts to automatically determine the 
forged area without assuming any a priori knowledge. The methods are tested both on examples of real forgeries and on 
non-forged images. We also investigate how further image processing applied to the forged image, such as lossy 
compression or filtering, influences our ability to verify image integrity. 
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1. INTRODUCTION

The practice of forging photographs is probably as old as the art of photography itself. Digital photography and 
powerful image editing software made it very easy today to create believable forgeries of digital pictures even for a non-
specialist. As digital photography continues to replace its analog counterpart, the need for reliable detection of digitally 
doctored images is quickly increasing. Verifying the content of digital images or identifying forged regions would be 
obviously useful for instance in the court of law, when digital pictures are presented as evidence. 

Recently, several different methods for detecting digital forgeries were proposed. Ng and Chang proposed a method for 
detection of photomontages [1]. Popescu et al. developed several methods for identifying digital forgeries by tracing 
artifacts introduced by resampling [2] and Color Filter Array (CFA) interpolation [3]. Recently, Johnson et al. [4] 
proposed another method based on inspecting inconsistencies in lighting conditions. In [5], Fridrich et al. established a 
method for detecting copy-move forgeries (a similar method was later proposed by Popescu et al. [6]). For each of these 
methods, there are circumstances when they will fail to detect a forgery. Method [1], for instance, has very restricting 
assumptions that are usually not fulfilled and even when they are satisfied, its misclassification rate is almost 28%. The 
copy-move detection method [5] is limited to one particular case of forgeries, when a certain part of the image was 
copied and pasted somewhere else in the same image (e.g., to cover an object). Methods based on detecting traces of 
resampling may produce less reliable results for processed images stored in the JPEG format. The method based on 
detection of inconsistencies in lighting assumes nearly Lambertian surface for both the forged and original areas and 
might not work when the object does not have a compatible surface, when pictures of both the original and forged 
objects were taken under approximately similar lighting conditions, or during a cloudy day when no directional light 
source was present.  

Obviously, the problem of detection of digital forgeries is a complex one with no universally applicable solution. What 
is needed is a set of different tools that can be all applied to the image at hand. The decision about the content 
authenticity is then reached by interpreting the results obtained from different approaches. This accumulative evidence 
may provide a convincing enough argument that each individual method cannot. 
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In this paper, we propose a new method for detection of digitally manipulated images based on the sensor pattern noise 
that each camera involuntarily inserts into each image it takes. The method is applicable whenever we are in a situation 
when the forged image is claimed to have been taken by a camera that we have in possession or at least, we have other 
images taken by the camera. Because the pattern noise appears to be a unique stochastic fingerprint of digital imaging 
sensors [7], [8], forged areas could be identified by verifying the consistency of their noise residual with the pattern 
noise of the particular sensor element. 

In the next section, we review the properties of the pattern noise and methods for its detection in images. In Section 3, 
we describe a supervised algorithm for verifying the integrity of a given Region of Interest (ROI), e.g., when some a 
priori information about the forged area exists. In Section 4, we present a more general unsupervised algorithm for 
automatic identification of forged areas that can be subsequently confirmed by the supervised algorithm. The last 
section contains a summary, discussion of limitations, and outline of future directions. 

2. PATTERN NOISE & DETECTION OF ITS PRESENCE 

2.1 Signal processing in digital cameras 
In this section, we briefly describe the processing stages inside a typical digital camera and discuss various 
imperfections that inevitably enter the image acquisition process. We focus on the sensor pattern noise. 

The heart of every digital camera is the imaging sensor. The sensor is divided into very small minimal addressable 
picture elements (pixels) that collect photons and covert them into voltages that are subsequently sampled to a digital 
signal in an A/D converter. Before the light from the photographed scene reaches the sensor, however, it passes through 
the camera lenses, an antialiasing (blurring) filter, and then through a color filter array (CFA) [9]. The CFA is a mosaic 
of color filters that block out a certain portion of the spectrum, allowing each pixel to detect only one specific color. The 
Foveon™ X3 sensor is the only sensor that does not use CFA and is able to capture all three basic colors at every pixel. 

If the sensor uses a CFA, the digitized sensor output is further interpolated (demosaicked) using color interpolation 
algorithms to obtain all three basic colors for each pixel. The resulting signal is then further processed using color 
correction and white balance adjustment. Additional processing includes gamma correction to adjust for the linear 
response of the imaging sensor and kernel filtering to visually enhance the final image. Finally, the digital image is 
written to the camera memory device in a user-selected image format. This may require additional processing, such as 
JPEG compression. 

2.2 Pattern noise 
There are several sources of imperfections and noise that influence the image acquisition process. When the imaging 
sensor takes a picture of an absolutely evenly lit scene, the resulting digital image will still exhibit small changes in 
intensity among individual pixels. This is partly because of random components, such as readout noise or shot noise
(also known as photonic noise [10], [11]), and partly because of the pattern noise, which is a deterministic component 
that stays approximately the same if multiple pictures of the same scene are taken. Due to this property, the pattern 
noise is present in every image the sensor takes. In this paper, we use this noise for identification of forgeries. Note that 
while averaging multiple images reduces the random components, it enhances the pattern noise. 

The two main components of the pattern noise are the fixed pattern noise (FPN) and the photo-response non-uniformity 
noise (PRNU)1. The fixed pattern noise (FPN) refers to pixel-to-pixel differences when the sensor array is not exposed 
to light (so called dark current). The FPN is an additive noise and some middle to high-end consumer cameras suppress 
this noise by subtracting a dark frame from every image they take. The FPN also depends on exposure and temperature. 

The photo-response non-uniformity noise (PRNU) is the dominant part of the pattern noise in natural images. Before we 
discuss it further, we give a mathematical model of the image acquisition process. Let us denote the raw signal that 
would be registered by the sensor due to incoming light (if no other sources of noise existed) as x = (xij), 
                                                          
1 Different authors use different terminology when describing noise sources. We use the same terminology as [10]. Note 
that, for example, FPN means something else in [11]. 



i = 1, …, m, j = 1, …, n, where m n is the sensor resolution. Denoting the random shot noise as = ( ij), the additive 
random noise (represented by the read-out noise, etc.) as  = ( ij), and the dark current as c = (cij), the digitized output of 
the sensor y = (yij) can be expressed in the following form (before any other camera processing occurs) 

yij = fij (xij + ij) + cij  + ij.     (1) 

The factors fij are close to 1 and capture the PRNU noise, which is a multiplicative noise. The most important 
component of PRNU is the pixel non-uniformity (PNU), which is defined as different sensitivity of pixels to light. The 
PNU is caused by stochastic inhomogenities present in silicon wafers and other imperfections imposed during the 
sensor manufacturing process. As such, it is not dependent on ambient temperature and appears to be stable over time. 
The power spectrum of the PNU is continuous [12] with slightly attenuated high spatial frequencies. Light refraction on 
dust particles and optical surfaces and properties of the camera optics also contribute to the PRNU noise. These 
components are known as “doughnut” patterns and vignettage and are of low spatial frequency in nature [11]. Because 
these low frequency components are not a characteristic of the sensor, we do not use them for identification of forgeries. 
We only use the PNU component, which is an intrinsic characteristic (fingerprint) of the sensor. 

The PRNU noise is not present in completely saturated areas of an image, where all sensor pixels were filled to a full 
capacity producing a constant signal. It is also clear from (1) that in very dark areas (when xij  0) the PRNU noise is 
largely suppressed. 

The signal y goes through a chain of complex processing before the final image file is stored on the camera’s memory 
card. This processing includes operations on a local neighborhood of pixels, such as demosaicking, color correction, or 
kernel filtering. Some operations may be non-linear in nature, such as gamma correction, white balance, or adaptive 
color interpolation. The final pixel values pij, which we will assume to be in the range 0 pij  255 for each color 
channel, are 

pij = T(yij, N(yij), i, j),      (2) 

where T is a non-linear function of yij, the pixel location (i, j), and values y from a local neighborhood N(yij) (e.g., the 
5 5 neighborhood). 

It is possible to suppress the pattern noise using a process called flat fielding [10], [11], in which the pixel values are 
first corrected for the additive FPN and then divided by a flat field frame obtained by averaging images of a uniformly 
lit scene. This process cannot be done correctly from the final pixel values pij and must be performed on the raw sensor 
output y before any further image processing. While it is commonly done for astronomical imaging, consumer digital 
cameras do not flat-field their images because it is difficult to achieve a uniform sensor illumination inside the camera. 

Because essentially all imaging sensors (CCD, CMOS, JFET, or CMOS-Foveon™ X3) are built from semiconductors 
and their manufacturing techniques do not differ too much, the pattern noise in all these sensors has similar properties. 
As noted in [10] (page 92), CMOS sensors also experience both FPN and PRNU. Moreover, according to [13] the 
PRNU noise strength is comparable for both CMOS and CCD detectors. Because the JFET sensors are similar to 
CMOS sensors, they should behave similarly. 

2.3 Detection of pattern noise (forgery identification) 
Forged regions can be identified as those lacking the pattern noise. We detect the presence of the PNU noise in a region 
by calculating the correlation between the region noise residual and the pattern noise. Thus, forgery detection must start 
with determining the reference pattern for the camera. We describe this process first and then present the forgery 
identification algorithm. 

For a given camera C, we obtain an approximation PC to the camera reference pattern noise by averaging multiple 
images p(k), k = 1, …, Np. This process can be sped up by suppressing the scene content from the image prior to 
averaging, which can be achieved using a denoising filter F and averaging the noise residuals n(k) instead 

n(k) = p(k) – F(p(k)).      (3) 



Additional benefit of denoising is that the low-frequency components of PRNU (e.g., patterns due to light refraction on
dust particles) are automatically removed. Obviously, the larger the number of images Np, the more we suppress the
impact of random noise components and the scene. In our experiments, we used Np = 300 and we recommend using Np
> 50, if possible. The advantage of this method for obtaining the reference pattern is that it is applicable to all cameras
and does not require access to the camera (images from the camera are sufficient).

We have experimented with several denoising filters F and eventually decided to use the filter described in [14] because
it gave us the best experimental results. This is likely because the noise residual obtained using this particular filter
contains the least amount of traces of the scene (areas around edges are usually misinterpreted by less sophisticated
denoising filters, such as the Wiener filter or the median filter). 

To decide whether a selected region R in image p is compatible with the pattern noise from camera C, we first calculate
the correlation between the noise residual n = p – F(p) with the camera reference pattern PC
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where n(R) and PC(R) denote n and PC constrained to R and written as vectors. The bar above symbols denotes the
mean value, “ ” is the usual dot product, and ||.|| is the L2 norm.

Because the PRNU noise is multiplicative (see (1)), it is absent in completely saturated areas and largely suppressed in 
dark areas. Also, the denoising filter is less effective in removing the noise in highly textured areas with many fine 
edges. In such regions, the correlation (n(R), PC(R)) will be naturally lower and care must be taken not to misinterpret
such regions as tampered.

We may attempt to estimate the distribution of correlations (n(Q), PC(Q)) for regions Q in the same image that are
disjoint with R, have similar histogram (and thus saturation), and, if possible, similar texture. Then, we could reach a 
decision about the authenticity of R based on the statistical significance of the value (n(R), PC(R)). The biggest
problem with this approach is that there may not be sufficiently many such regions in the image to correctly estimate the
distribution. Moreover, if there are other unsuspected regions in the image that were tampered, this approach may fail 
completely. The alternative is to calculate the statistical evidence that R was tampered. The advantage here is that we
can always collect a large statistical sample necessary to evaluate the statistical significance of (n(R), PC(R)). Here is
how we proceed.

We calculate the correlations (n(Qk), PC(R)) for regions Qk, k = 1, …, NR of the same size and shape coming from other
cameras or from the same camera but at a different location within the image. The regions Qk serve as a sample of
regions that do not contain the reference pattern PC(R). We model the distribution of (n(Qk), PC(R)), k = 1, …, NR, with
the generalized Gaussian distribution2 with cumulative distribution function G(x). Using this model, the probability that
a generalized Gaussian random variable with the estimated distribution will attain the value (n(R), PC(R)) or larger is 

1 ( ( ), ( ))Cp G n PR R .     (5)

This p-value will be taken as the measure of statistical significance to evaluate the authenticity of the ROI R. In 
particular, we decide that R was tampered if p >  = 10–3 and not tampered otherwise.

If the algorithm above decides that R was tampered, we need to validate the decision by applying the same algorithm to
other regions Q in the same image that are disjoint with R, have the same number of pixels, and, if possible, similar
histogram. All such regions should be evaluated as non-tampered (equivalently, their p-value p ).

2 For parameter estimation, we used the method of moments [16].



3. VERIFICATION OF A SELECTED ROI 

In this section we study the problem of verifying the integrity of a selected ROI. For example, the ROI may have been
determined manually by an operator as an area whose integrity is in question. Alternatively, the ROI could have been
identified by one of the forgery-detection detection techniques capable of localizing the tampering ([2], [3], [5], [6]) and
we wish to strengthen our evidence.

a) Duck b) Goat

c) Woodchuck d) Person

e) Head f) Car
Figure 1: Six digital forgeries.

Figure 1 Figure 1

For our experiments, we prepared 6 different forgeries, striving for a natural appearance of each forgery. The forged
objects were pasted either from the same image, from another image from the same camera, or from an image from a
completely different source. In some cases, the pasted objects had to be resampled to adjust their size. The original
images were true color images either in the raw TIFF format or the JPEG format with varying quality factors. In one
case, the original image was a low-resolution low-quality JPEG (the “goat” forgery below).

In , we show all six forgeries. a) is a copy-move forgery created from a 1712×2288 Olympus C765
TIFF image. The female duck on the far right is a copy of the other female duck in the image. Figure 1 b) is a forgery
created from a low-resolution low-quality (non-standard JPEG quantization matrix with the quality factor of
approximately 73) Canon PowerShot G2 1200×1600 JPEG image. The goat in the lower right corner was pasted from



approximately the same quality image from the same camera taken a few seconds before. The “woodchuck” forgery 
shown in Figure 1 c) is another copy-move forgery created from a 1712×2288 Olympus C765 TIFF image. The 
woodchuck at the bottom is a copy of the other woodchuck in the image. The tampered area is relatively large. Figure 1 
d) was created from a 1712×2288 Olympus C765 JPEG image of approximate JPEG quality factor 87. The person was 
pasted from a Canon G2 picture. Figure 1 e) is a forgery created from a 1200×1792 Kodak DC290 JPEG image of an 
unknown quality factor. The head of the person on the left was cut from another image taken with the same camera and 
pasted into the image since the person did not like his original appearance. Figure 1 f) shows a forgery created from a 
1512×2268 Sigma SD9 TIFF image. The car parked on the left was cut from an Olympus C765 image. All forgeries 
were saved as TIFF images except for the "head" forgery, which was saved with a customized JPEG quantization matrix 
(considering only the five lowest frequency DCT coefficients, its quality factor was approximately 65). 

We further note that some forged objects (e.g., the duck, goat, woodchuck, and head) were pasted from images taken 
under almost identical conditions (if not the same image) and from the same angle. Thus, they should resist attempts to 
expose them by tracing lighting inconsistencies [4]. The duck and the woodchuck were not resized, while the pasted 
objects from the other four forgeries were slightly resized. Thus, the duck and the woodchuck cannot be detected by 
inspecting traces of resampling [2] but could be probably detected using the copy-move detection method [5], [6]. Due 
to resizing and/or JPEG compression, it is also likely that the method based on detecting traces of CFA interpolation [3] 
might not apply to the “person,” “head,” and “goat” forgeries. On the other hand, because most pasted objects were 
resized and the forgeries saved as TIFFs, the method of [2] would likely be applicable to the “goat,” “person,” and “car” 
forgeries. We point out that since the “head” forgery was created from JPEG images and saved as relatively low-quality 
JPEG, it would not be exposed by any of the previously introduced methods. We now analyze all six forgeries using the 
proposed method. 

3.1 ROI verification algorithm 
We follow the procedure described in Section 2.3. After selecting the ROI R, we first calculate the correlation 

(n(R), PC(R)) and then the correlations (n(Qk), PC(R)), k = 1, …, NR, for regions Qk of the same size as R coming 
from 90 non-tampered images obtained using 9 different digital cameras (10 from each digital camera). In each image, 
we randomly selected 100 regions, thus obtaining total of 90 100=9000=NR regions Qk. The generalized Gaussian fit3 to 

(n(Qk), PC(R)) constitutes a model of correlations for a forged region. Using this statistical model, we calculate the p-
value (5), which is the probability that (n(R), PC(R)) would be observed if it was a sample drawn from the estimated 
generalized Gaussian distribution (i.e., if it was forged). If p >  = 10–3, we do not reject our statistical hypothesis that 
the ROI R is forged. 

If the ROI is deemed forged, we validate this decision by applying the same algorithm to 200 regions Q in the same 
image that are disjoint with R and have the same number of pixels and similar histogram. All these regions should be 
detected as non-forged. 

As a final note, for color images we compute the correlation for each color channel separately and take as the final 
correlation value the maximum of these three numbers (because we expect the pattern noise in each channel). 

3.2 Experiments
For each forgery, the ROI was selected manually (see two examples in Figure 2) and the algorithm described in Section 
3.1 was applied. To find out how our ability to verify forged areas is influenced by lossy compression, we repeated the 
same process after recompressing the forged images using JPEG compression with quality factors ranging from 70 to 
100. Table 1 shows the p-values (5) for the ROIs from all six forgeries. We conclude that, at the significance level 

 = 10–3, all six ROIs were correctly identified as tampered.  

                                                          
3 For illustration, in Figure 3, we show the histogram of (n(Qk), PC(R)) and its generalized Gaussian fit for the 
(uncompressed) duck forgery.



Figure 2: Regions of interest for the duck and goat forgeries are displayed in white.

JPEG quality factorp-value 100 90 80 70
Duck 0.60 0.80 0.91 0.84
Goat 0.82 0.89 0.59 0.67
Woodchuck 2.6×10–2 0.11 0.08 0.18
Person 2.0×10–2 8.8×10–3 7.3×10–3 4.8×10–3

Head 0.47 0.63 0.39 0.75
Car 0.76 0.92 0.75 0.86
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Table 1: p-values for forged regions as a function of JPEG compression quality factor.

We validated the decision for each image by running the same algorithm on 200 regions Q in the same forged image 
that are disjoint with R and have the same number of pixels and similar histogram. In all cases and for all six forgeries,
the p-value for these regions was below , validating our conclusion about the region R. For illustration, in Figure 4 we
show the scatter plot of the correlations (n(Q), PC(Q)) for the duck forgery after saving the forged image as
uncompressed TIFF and as JPEG with various quality factors (the value (n(R), PC(R)) is also shown). Note that the
correlations gradually decrease with JPEG compression.

Figure 3: Histogram of (n(Qk), PC(R)) and its generalized
Gaussian fit for the uncompressed duck forgery. The vertical line
denotes the correlation in the region of interest, (n(R), PC(R)).

Figure 4: Correlation values in the ROI and other
disjoint regions in the JPEG-compressed forged image 

for various JPEG quality factors.

4. AUTOMATIC ROI IDENTIFICATION

A more useful version of the forgery identification algorithm would identify the forged area automatically. In this
section, we discuss and analyze some preliminary results of our effort to identify the ROI automatically without



assuming any prior information about its location, shape, or size. Once the region is identified, it is inspected using the
algorithm of Section 3.1.

If there is a tampered area in the image, we assume that it is sufficiently large and compact but we have no information
about its location, size, or shape. We know that the correlation in the tampered area is expected to be significantly lower
compared to the rest of the image. 

We experimented with sliding square blocks (e.g., 128×128) and computed the correlation at each location. However,
this approach can only provide good performance for areas significantly larger than the sliding block. In particular, it
poorly detects long but thin areas, areas with holes, and other areas with complicated shapes. Thus, we decided to use
sliding blocks of different sizes and shapes. To speed up the algorithm, we do not use sliding blocks but partially
overlapping blocks (overlapping approximately by 50–75%).

Automatic identification of forged regions
1. Prepare N blocks of different types (e.g., the blocks in Figure 5).
2. For each block type i {1, …, N}, compute the correlation of the image noise residual with the camera

reference pattern in overlapping blocks across the entire image. There will be total of ni blocks and correlations
cj, j = 1, …, ni.

3. For each block type i, select m blocks i1, …, im with the smallest correlation , k = 1, …, m. There will be

total of m×N blocks B
ki

c

k .

4. Construct the mask B = .
1

m N
kk
B

5. For each pixel p B, let t(p) = |{Bk|p Bk}| be the number of blocks selected in Step 3 covering p. Determine
the threshold t as the median value of t(p) for p B.

6. The potentially tampered ROI is R = {p| t(p) > t}.

The operator should continue the analysis and verify the identified ROI with the algorithm in Section 3.1.

The idea behind the algorithm is simple. For each block size and shape, some of the blocks with the lowest correlation
most probably cover the forged area. The remaining blocks are somewhere else in the image, where a block of this size
and shape with low correlation might be located. By removing pixels from the mask B that are covered by a smaller
number of blocks than the rest, we eliminate the regions with low correlation spread somewhere else in the image.

This algorithm requires several parameters, such as the shapes and sizes of blocks. Generally the more shapes and sizes, 
the better results one can expect, but adding more sizes and shapes increases the computational time.

4.1 Experiment
In Figure 5, we list all N = 12 blocks that we used in our implementation of the algorithm. They include two squares
128×128 and 172×172, a rectangle 64×256 rotated 4 different ways, two circles with radii 73 and 109, and ellipses with
half-axes 55 and 97 rotated 4 different ways. The parameter m was set to 8. 

Figure 6 shows the results of the automatic ROI detection algorithm for four selected forgeries shown in Figure 1. In
each case, the algorithm correctly identified majority of the tampered region. For the “person” forgery, there is a small
rectangular region also potentially identified as tampered. This is because the region is very dark. The “car” forgery also
contains a few regions in the tree branches potentially identified as tampered. After selecting each suspected region as
ROI and applying the algorithm of Section 3.1, only the tampered regions were correctly deemed as forged because
both the dark region and the tree branches contain some (suppressed) pattern noise that brings the p-values above 10–3.



Figure 5: Sliding block shapes used for automatic ROI detection.

a) Duck b) Person

c) Head d) Car

Figure 6: Examples of automatically detected ROIs shown in white.

At this point, we note that when the image contains regions with a very complex texture, the automatic ROI detection 
algorithm combined with the analysis of Section 3.1 may fail to correctly identify such regions. To estimate how often 
this may happen, we ran the automatic forgery detection algorithm for 81 images that were not tampered and calculated
the p-values for the ROIs found by the algorithm. For 17 images, the found ROIs were completely saturated at 0 or 255
and were thus eliminated from further analysis because our method (and, in fact, any other forgery detection method)
cannot be applied. Out of the remaining 64 cases, only two regions had their p-values above 10–3 (p = 5 10–3). These
constitute false alarms. Both regions had a very complex texture with partial saturation (see Figure 7). 



Figure 7: Two examples of falsely identified regions (heavily textured and partially saturated) region. 

5. CONCLUSIONS

We presented a new approach to detection of forgeries in digital images under the assumption that either the camera that
took the image or sufficiently many images taken by that camera are available. This forgery detection method is based
on detecting the presence of the camera sensor pattern noise, which is a unique stochastic characteristic of imaging
sensors, in individual segments in the image. The presence of the pattern noise in each segment is established using
correlation as in detection of spread spectrum watermarks. The forged region of interest is determined as the one that
lacks the pattern noise and for which there is no natural explanation for the noise being suppressed (saturation, darkness,
or complex texture preventing noise extraction). The statistical significance of the correlation in the ROI is evaluated
using the p-value. Our research indicates that it is possible to perform relatively reliable identification of forged regions
even from images that were JPEG compressed with quality factors as low as 70.

We also describe an algorithm for automatic identification of the forged ROI. It is determined as the region with the 
lowest pattern noise presence in the image. This is achieved by sliding over the image a set of basic shapes with 
different orientations and accumulating the lowest correlation values. We experimentally investigate the probability of
falsely identifying a non-tampered region. More detailed investigation of this method as well as exploration of
alternative approaches that might include region-growing algorithms will be the subject of our future work.

We point out that our method may not provide sufficiently conclusive statistical evidence for regions with naturally low
presence of pattern noise (mainly saturated areas or very dark areas). Furthermore, geometrical processing, such as
cropping or resizing, causes desynchronization with the sensor pattern noise and may require expensive searches that
will likely increase the ratio of falsely identified forgeries.

We would like to stress that even though it might seem that the requirement to have available the camera that took the
image is not feasible, there are many situations in forensics where the camera is available. For instance, in the court of 
law, an image of an unknown unspecified origin would be hardly even considered as possible evidence. Finally, we
reiterate that reliable forgery detection should be approached from multiple directions, combining the evidence from
other methods ([1], [2], [3], [4], [5], and [6]), if applicable.
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