

IFIP CMS 2005

Selective Image Encryption Using JBIG

Roman Pfarrhofer and Andreas Uhl roman@pfarrhofer.at, uhl@cosy.sbg.ac.at

Outline

Selective Image Encryption Using JBIG

- Motivation for Selective Encryption
- Basics of the JBIG format
 - Planes
 - Resolution layers
 - Deterministic prediction (DP)
 - Typical prediction (TP)
 - Stripes
 - Bit stream

Selective Encryption using JBIG

Outline

Selective Image Encryption Using JBIG

- Implementation
- Experiments
- Attack resistance
 - Median filtering
 - Edge detection
 - Replacement attack
- Conclusion

Motivation for Selective Encryption

Selective Image Encryption Using JBIG

- Security requirements for multimedia content
 trade off between security and complexity
- Especially for real-time video encryption it's important to reduce encryption effort
- Selective encryption schemas are targeting to only encrypt relevant parts of multimedia data

Basics of the JBIG format

Selective Image Encryption Using JBIG

- Joint Bi-Level Image Experts Group was standardized 1993 (ITU-T T.82)
- JBIG was meant to improve fax compression standards
- Binary context-based adaptive arithmetic coder
- Supports hierarchical progressive mode
- JBIG differs between
 - Planes
 - Resolution layers
 - Stripes

Planes

Selective Image Encryption Using JBIG

IFIP CMS 2005

Carinthia Tech Institute, Salzburg University

Resolution layers

Selective Image Encryption Using JBIG

Resolution layers

Selective Image Encryption Using JBIG

IFIP CMS 2005

Cross-layer contexts

"typical prediction": Identical lines in the lowest resolution layer are only coded once and labelled as typical for higher layers

"deterministic prediction": Pixel values which can be predicted due to neighbouring pixels of the current and – in particular – the lower resolution layer are not encoded

Stripes

Selective Image Encryption Using JBIG

Carinthia Tech Institute, Salzburg University

Bit stream

Selective Image Encryption Using JBIG

20-byte header (with image size, #planes, #layers, stripe size, first layer, options, SDE ordering, ...)

[optional 1728-byte table]

stripe data entity

[optional floating marker segments]

stripe data entity

stripe data entity

R. Pfarrhofer and A. Uhl

Selective Encryption using JBIG

Selective Image Encryption Using JBIG

- Our approach is mainly based on the high amount of dependencies between resolution layers in progressive mode
- Only encrypting the lower resolution layers (most relevant) is reducing the amount of data to compute

Selective Encryption using JBIG

Selective Image Encryption Using JBIG

IFIP CMS 2005

KARNTEN

Implementation

Selective Image Encryption Using JBIG

- Implementation is based on the C JBIG-Library from M. Kuhn
- This library was extended to encrypt single stripes with
- C++ AES-Implementation from B. Gladman

Selective Image Encryption Using JBIG

- Experiments based on 8bpp 512 x 512 grayscale images with the lowest resolution set to 32 x 32 pixels
- Encrypted images are notated as following:

Resolution Layer / Plane

In example: 1(5) / 4(8)

Selective Image Encryption Using JBIG

Selective Image Encryption Using JBIG

■ 1(5) / 1(8) → 0,056 % (116 Bytes)

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

1(5) / 1(8) → 0,066 % (117 Bytes)

R. Pfarrhofer and A. Uhl

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

IFIP CMS 2005

KARNTEN

Selective Image Encryption Using JBIG

■ 1(5) / 4(8) → 0,265 %

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

IFIP CMS 2005

KARNTEN

Selective Image Encryption Using JBIG

■ 2(5) / 8(8) → 2,292 %

Carinthia Tech Institute, Salzburg University

R. Pfarrhofer and A. Uhl

Selective Image Encryption Using JBIG

■ 2(5) / 8(8) → 1,977 %

IFIP CMS 2005

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

- For testing attack resistance, we are using
 - Median filtering
 - □ Edge detection
 - □ Replacement attack
 - Replacing encrypted planes by constant zero data
 - Compensate zero data by changing average luminance

Selective Image Encryption Using JBIG

• Median filtering on $1(5) / 1(8) \rightarrow 0,066 \%$

R. Pfarrhofer and A. Uhl

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

IFIP CMS 2005

■ Edge detection on / 1(5) / $1(8) \rightarrow 0,066$ %

R. Pfarrhofer and A. Uhl

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

Replacement attack on $1(5) / 1(8) \rightarrow 0,066 \%$

R. Pfarrhofer and A. Uhl

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

• Median filtering on 1(5) / 4(8) \rightarrow 0,265 %

R. Pfarrhofer and A. Uhl

Selective Image Encryption Using JBIG

• Edge detection on $1(5) / 4(8) \rightarrow 0,265 \%$

R. Pfarrhofer and A. Uhl

Carinthia Tech Institute, Salzburg University

Selective Image Encryption Using JBIG

IFIP CMS 2005

Replacement attack on $1(5) / 4(8) \rightarrow 0,265 \%$

Carinthia Tech Institute, Salzburg University

Conclusion

Selective Image Encryption Using JBIG

IFIP CMS 2005

The scenario when encrypting the lowest two resolution layers of all planes
 2 (5) / 8 (8)
 can be considered secure in any case.

In this attack resistant scenario only 1% -2% of data have to be encrypted.