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Goals of this work

Introduction of a novel multimodal hand biometric system:
our proposed method combines Hand geometry, Fingerprint and
Palmprint biometrics for reliable person authentication.
Employment of document scanners designed for large
markets as biometric sensors: high availability, facilitates
reproducibility of experiments, sensor independence, minimizes
acquisition and upkeep cost.

Why combining single-sensor hand-based biometrics?
Increased accuracy without the need of additional sensors;
More flexibility in case of failure to acquire single biometrics (e.g.
single bad quality fingerprints);
Increased security with respect to biometric system attacks;
High availability of flatbed sensors;
Fair comparison between different modalities.
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Proposed method and related work
Proposed method

Sensor: Scanner
Features:

Shape
Minutiae
Palmprint
Eigenpalms+fing.

Acc.: 0.006% TER
Samples: ≈ 86× 5

Kumar et al.

Sensor: Camera+FPR
Features:

Hand geometry
Minutiae
Palmprint

Accuracy: 5.61% TER
Samples: 100× 8

Rowe et al.

Sensor: Multispectral
Features:

Minutiae
Palmprint

Accuracy: 0% TER
Samples: 50× 12
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System architecture

Preprocessing
Binarization

Rotational alignment

Displacement alignment

Contour extraction

Salient point detection

Shape extraction

Minutiae extraction

Palmprint extraction

Eigenpalms+Eigenfingers

Feature extraction

Plantar image acquisition

Shape matcher

Minutiae matcher

Palmprint matcher

Eigenpalms+Eigenfingers

Matching

System
Database

Fusion
and

Decision

GENUINE or IMPOSTER

ID

Shape: local finger
widths

Minutiae: Galton
details

Palmprint: local
block variance

Eigenpalms+Eigenfingers: projection onto palm /finger space
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Sensor and test set
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(a) Employed scanning device (b) Resolution-duration tradeoff.
Test database:

Samples: 443 right-hand samples of 86 persons (≈ 5 samples
per person);
Gender balance: 82.4 % male versus 17.6 % female;
Type: 4250× 5850 pixels at 500 dpi resolution, 8-bit grey-scale;
Conditions: data acquisition with user sitting in front of standard
HP 3500c flatbed scanning device contained in a box;
Recording interval: 15 minutes.
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Preprocessing

1 Segmentation and normalization: Otsu’s thresholding,
moment-based ellipse-fitting, removal of visible arm parts,
hand-coordinate-system alignment (origin: valley between
ring/middle finger, direction: approximated outer palm boundary);

2 Contour extraction and salient point detection: intra-finger
valleys (and peaks) as minima (and maxima) of the radial distance
function are refined with best-ellipse fitting of individual fingers;

3 Region extraction: 500 dpi fingerprint (1
3 part of finger/1

2 part of
thumb) and palmprint region (size s equal to avg. finger length,
Y-offset 0.2s), both 500 dpi and 100 dpi (128× 256 for thumb and
little finger, others: 128× 384) finger regions.
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Shape feature

Feature extraction: using 500 dpi
finger regions;

1 Generation of slices: each
upright finger is divided into
c = 3 slices S1, . . . Sc of equal
height covering the finger;

2 Average object width: w(Sn),
1 ≤ n ≤ c, with respect to the
y-monotone contour extracted
using a left-right scan;

3 Concatenation of features for
all fingers.

Matching:

1 Decomposition: each feature
vector is decomposed into
finger-dependent parts;

2 Manhattan distance:
between template and
reference vectors for each
finger;

3 Combination: Sum rule
fusion after linear score
normalization.
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Minutiae feature

Feature extraction: using NIST’s
mindtct on 500 dpi fingerprints;

1 Contrast enhancement:
using CLAHE;

2 Generation of Image Maps:
local ridge orientation map
(NFIS: 16 directions, 8× 8
blocks), low flow maps, low
contrast maps, . . . ;

3 Minutiae detection: in the
binarized image by local pixel
patterns;

4 Minutiae filtering: eliminates
minutiae in malformed
structures.

Matching: using NIST’s bozorth3;

Termination

(ter,x2,y2,  2)

Bifurcation

(bif,x1,y1,  1)y1

x1

x2

y2

1
2

1 Pairing: Matching of
corresponding (wrt. distance,
orientation, type) minutiae
yields a similarity score for
each finger;

2 Combination: Max rule fusion
after linear score
normalization.
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Palmprint feature

Feature extraction: using palmprint;

1 Region normalization, edge
detection: predefined mean
φd := 100, variance ρd := 400;

R′(x , y) :=


φd + λ if R(x , y) > φ,
φd − λ else.

(1)

λ =

s
ρd(R(x , y)− φ)2

ρ
. (2)

Edges: 7× 7 Prewitt filter;
2 Feature extraction: variances

of 144 overlapping blocks
(24× 24) within the resized
(300× 300) image.

Matching:

1 Decomposition: each feature
vector is decomposed into
finger-dependent parts;

2 Euclidian distance: between
template and reference
vectors for each finger;

3 Combination: Sum rule
fusion after linear score
normalization.
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Eigenpalms+Eigenfingers feature

Eigenspaces for each finger type/ palm are precalculated by estimating
most significant principal components ui , i ∈ {1, . . . , l} from the
covariance matrix of mean-normalized training samples (mean a).

Feature extraction: using 100 dpi
finger regions;

1 Normalization of the palm or
finger vector b by subtracting
the mean image n = b− a.

2 Projection onto eigenspace to
get the feature vector
components ωi = uT

i n.

Matching:

1 Decomposition: each feature
vector is decomposed into
finger-dependent parts;

2 Manhattan distance: in
feature space, result
converted into similarity score;

3 Combination: Product rule
fusion after linear score
normalization.
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Performance evaluation

Which of the presented hand-based techniques performs best and
which total performance can be achieved?

Comparisons: cross-comparison of available templates resulting
in 909 genuine and 95232 imposter comparisons;
Failure to Acquire: 0.9% of all templates were rejected;
Results: highest individual MinHTER accuracy by Minutiae, but all
features contribute to the best combined feature using Weighted
Sum Rule fusion (weights: 0.10 for Shape, 0.17 for Palmprint, 0.06
for Eigenpalms + Eigenfingers, and 0.67 for Minutiae).

Algorithm MinHTER ZeroFMR ZeroFNMR

Shape 4.7% 70.74% 25.53%
Minutiae 0.12% 1.1% 16.44%
Palmprint 4.1% 36.19% 100%
Eigenpalms + Eigenfingers 1.44% 15.29% 10.72%
Fusion using Weighted Sum Rule 0.003% 0.33% 0.005%
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Receiver Operating Characteristics
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Summary and Outlook

Subject: A single-sensor approach for multimodal hand-based
biometric recognition has been investigated; Shape, Minutiae,
Palmprint, and Eigenpalms+Eigenfingers features have been
compared by their relative performance.
Result:

Minutiae and PCA-based Eigenpalms+Eigenfingers report highest
verification accuracy with 0.12% MinHTER and 1.44% MinHTER,
respectively.
Palmprint and Shape features are less accurate (4.1% and
4.7% MinHTER), but contribute to the combined result;
Best Weighted Sum rule fusion weights were found at 0.10 for
Shape, 0.17 for Palmprint, 0.06 for Eigenpalms + Eigenfingers, and
0.67 for Minutiae, resulting in 3 · 10−3% MinHTER.

Future topics: increased training set size, time lapses between
recordings.
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Thank you for your attention!
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Any Questions?
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