Pit Pattern Classification with Support Vector Machines and Neural Networks

Christian Kastinger

February 1, 2007

Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

Introduction

Feature Extraction and Selection

Neural Network

Support Vector Machine

Results

Conclusion

A 3 b

Introduction

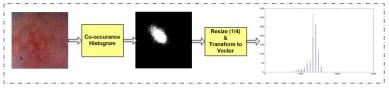
Feature Extraction and Selection Neural Network Support Vector Machine Results Conclusion

Investigation of support vector machine and neural network for classification of pit pattern (256×256 RGB images) with previous feature extraction (co-occurrence histogram) and feature selection (principle component analysis) for a 2-class and a 6-class problem.

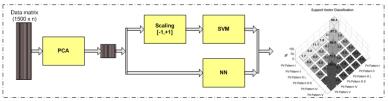
Introduction

Feature Extraction and Selection Neural Network Support Vector Machine Results Conclusion

Classification Process

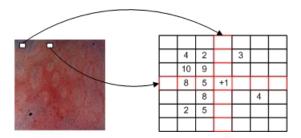


Classification



4 E b

Co-occurrence histogram



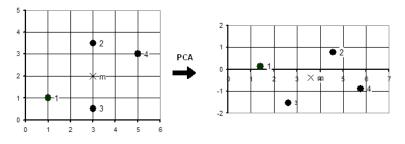
- Considers dependencies between adjacent pixels.
- Co-occurrence distance (between two samples) can be varied.
- Orientation (vertical, horizontal,...) is not fixed.

Principle Components Analysis (PCA)

- ▶ PCA aims to provided a better representation with lower dimension.
- Compaction of information.
- Process
 - Create a new mean-adjusted data matrix X.
 - Calculate a $m \times m$ covariance matrix Σ from the mean-adjusted data \tilde{X} .
 - Compute n significant eigenvectors W from the covariance matrix Σ.
 - Perform dimensionality reduction: $\mathbf{Y} = \mathbf{W}^T \mathbf{\tilde{X}}$.
- n is a tradeoff between "compression" and quality.

PCA Example

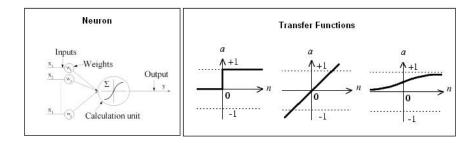
► Data points :
$$x = \begin{pmatrix} 1 & 3 & 3 & 5 \end{pmatrix}$$
; $y = \begin{pmatrix} 1 & 3.5 & 0.5 & 3 \end{pmatrix}$
► $\mathbf{\tilde{X}} = \begin{pmatrix} 2.667 & 1.333 \\ 1.333 & 2.1667 \end{pmatrix} \implies \mathbf{W} = \begin{pmatrix} 0.639 - 0.77 \\ -0.77 - 0.639 \end{pmatrix}$
► $x' = \mathbf{W}^T * \tilde{x} = \begin{pmatrix} 1.409 & 4.546 & 2.63 & 5.767 \end{pmatrix}$
► $y' = \mathbf{W}^T * \tilde{y} = \begin{pmatrix} 0.131 & 0.778 & -1.63 & -1.532 & -0.885 \end{pmatrix}$



Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

(日本) 日日

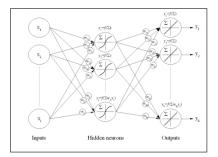
Basic Concept



- Inputs: $x_1, ..., x_j \in [0, 1]$
- Synapses: $w_1, ..., w_j \in R$
- Neuron: $net = \sum w_j * x_j$
- Output: $y = f(net \theta)$
- Bias value: θ

-

Multi Layer Network



- Layer weights are adjusted during learning based on some input/output patterns.
- Learning typically starts at the output layer and moves toward the input layer (back-propagation).

Mathematical Model

Activation of the hidden layer

$$net_j = \sum_i w_{ji} x_i$$

Output of the hidden layer

$$y_j = f(net_j) = f\left(\sum_i w_{ji}x_i\right)$$

Activation of the output layer

$$net_k = \sum_j w_{kj} f(net_j)$$

Net output

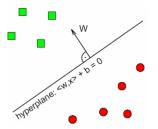
$$y_k = f(net_k) = f\left(\sum_j w_{kj}f\left(\sum_i w_{ji}x_i\right)\right) = f\left(\sum_j w_{kj}y_j\right)$$

Christian Kastinger Pit Patt

Pit Pattern Classification with Support Vector Machines and Neural Netwo

Basic Concept

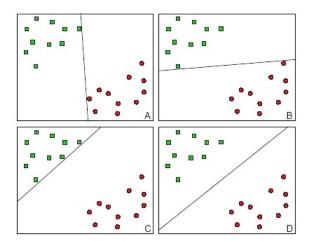
- A support vector machine is a learning algorithm which attempts to separate patterns by a hyperplane defined through:
 - normal vector w
 - offset parameter b.



Hyperplane definition:

$$H = \{x \mid \langle w, x \rangle + b = 0\}$$

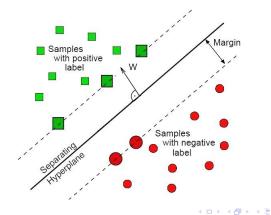
What is an Optimal Hyperplane?



Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

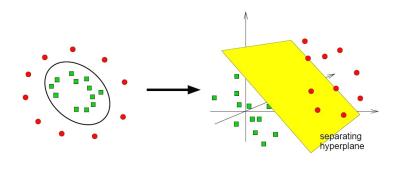
Separation with maximal Margin

 Support vectors are all points lying on the margin closest to the hyper plane.



Kernel Trick

- Nonlinear and complex separation in the 2-dimensional input space.
- Easier and often linear separation in higher dimensional *feature spaces*.



Kernel Examples

Linear kernel

$$k(\mathbf{x},\mathbf{x}') = \mathbf{x}^{\mathsf{T}}\mathbf{x}' = \langle \mathbf{x},\mathbf{x}' \rangle$$

Polynomial kernel of degree d

$$k(\mathbf{x}, \mathbf{x}') = (\gamma + \langle \mathbf{x}, \mathbf{x}' \rangle + coef0)^d$$

Radial basis kernel (RBF)

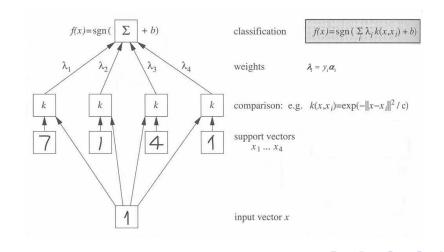
$$k(\mathbf{x}, \mathbf{x}') = exp(-\gamma \|\mathbf{x} - \mathbf{x}'\|^2)$$

MLP or Sigmoid kernel

$$k(\mathbf{x}, \mathbf{x}') = tanh(\gamma \langle \mathbf{x}, \mathbf{x}' \rangle + coef0)$$

-

Classification Principle



Mathematical Model

Dual optimization problem

$$\max_{\alpha \in \mathcal{R}^m} W(\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i y_i \alpha_j y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

subject to $\alpha_i \ge 0$, for all $i = 1, ..., m$, and $\sum_{i,j=1}^m \alpha_i y_i = 0$

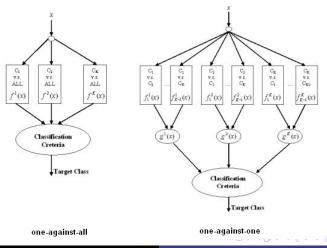
Decision function

$$f(\mathbf{x}) = sgn\left(\sum_{i=1}^{m} \alpha_i y_i \langle \phi(\mathbf{x}), \phi(\mathbf{x}_i) \rangle\right) + b\right)$$
$$= sgn\left(\sum_{i=1}^{m} \alpha_i y_i k(\mathbf{x}, \mathbf{x}_i) + b\right)$$

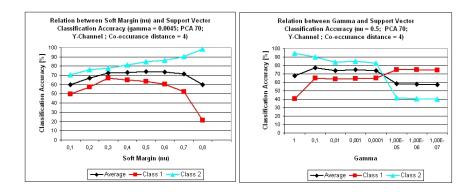
4 E b

Multi-Class Approaches

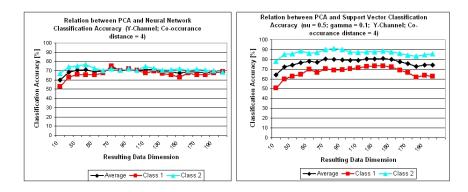
Decomposition into several binary classification tasks.



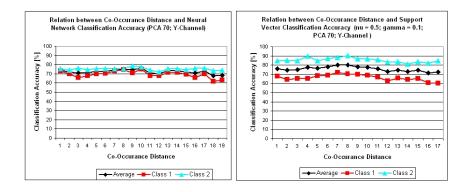
SVM Optimization



PCA Dependency

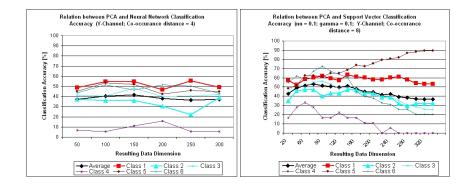


Co-occurrence Distance Dependency



Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

PCA Dependency for 6 Classes



Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

Additional Investigations

- Color-histogram (3-dimensional).
 - Too high data dimension.
 - Low classification results due to high data compression.
- Vertical co-occurrence histogram.
 - ▶ 3-5% lower classification results compared with horizontal histogram.
- Combination of horizontal and vertical co-occurrence histogram.
 - Lower classification results as with horizontal histogram.

Problems

- High data dimension.
- Data scaling.
- Time intensive parameter optimization.
- SVM accepts invalid input.
- Too less training samples

-

- SVM provides 10% better results than the NN.
- SVM parameter have to be optimized carefully.
- Better classification with PCA due to higher compaction of information.
- Low impact co-occurrence distance on classification accuracy.

- Evaluation of SVM with a higher amount of pit patterns.
- Consideration of other feature extraction and selection strategies.
- Investigation of other neural network topologies.

-

Bibliography

- R.O. Duda, P.E. Hart and D.G. Stork. *Pattern Classification*, 2nd ed. New York: John Wiley & Sons, 2001.
- C.C. Chang and C.J. Lin. LIBSVM: a library for support vector machines. URL: http://www.csie.ntu.edu.tw/ cjlin/libsvm, [Feb. 24, 2006].
 - N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge: Cambridge University Press,2000.
- B. Schoelkopf and A.J. Smola. *Learning with kernels*. Cambridge, MA: MIT Press, 2002.
- J.E. Jackson *A User's Guide to Principal Components*. John Wiley & Sons Inc, 2003.
- P. Chang and J. Krumm. *Object recognition with color cooccurance histograms*. In Proceediungs of CVPR '99, 1999.

Thank you for your attention.

Christian Kastinger Pit Pattern Classification with Support Vector Machines and Neural Netwo

< ∃⇒

3 N

э