Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Pit Pattern Classification of Zoom-Endoscopic Colon Images using DCT and FFT

Leonhard Brunauer Hannes Payer Robert Resch

Department of Computer Science University of Salzburg

February 1, 2007

A (B) > A (B) > A (B)

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Outline

- Introduction
- 2 Discrete Cosine Transformation (DCT)
 - Overview
 - Application
- 3 Fast Fourier Transformation (FFT)
 - Overview
 - Application
- Pattern Classification
 - Statistical Pattern Classification
 - Feature Extraction
 - Performance Evaluation
- 5 Results
- 6 Experiments
 - Color Models
 - Optimization Problem

- - E - b-

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Goals

- Classify images retreived from colonoscope.
- 6 class problem
 - Classify according to Pit Pattern classes.
 - Six cancer classes (I, II, III L, III S, IV, V)
- 2 class problem
 - Classify as either "operation required" or "operation not required".
 - Type I and II need not be removed.
 - Type V cannot be removed.
 - Type III and IV should be removed.

| 4 同 🕨 🗧 🖻 🖌 🖉

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Pit patterns

Type I

Type II

Type IV

< ロ > < 部 > < き > < き</p>

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Goals (cont'd)

- Previous work done at this university.
 - Wavelet-based approach.
 - Histogram-based approach.
- Work done in this project.
 - Discrete Cosine Transform (DCT) based approach.
 - Fast Fourier Transform (FFT) based approach.

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Processing steps

Figure: Processing pipeline

イロト イポト イヨト イヨト

э

- decompose image in blocks of size *n* * *n*
- compute 2D-FDCT on every single block

•
$$F_{x,y} = \frac{2 \cdot C(x) \cdot C(y)}{N} \cdot \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} f_{i,j} \cdot \cos\left(\frac{(2i+1) \cdot x \cdot \pi}{2*N}\right) \cdot \cos\left(\frac{(2j+1) \cdot y \cdot \pi}{2\cdot N}\right)$$

•
$$f_{i,j} :=$$
 pixel i,j of the $n \times n$ input block

• *F_{x,y}* := the x,y DCT coefficient of the *n* × *n* DCT coefficient matrix

• C(x) and C(y) are constants

•
$$C(n)$$

$$\begin{cases} \frac{1}{\sqrt{2}} & \text{if } n = 0\\ 1 & \text{if } n \neq 0 \end{cases}$$

-

Overview

DCT Overview

- *F*₀₀ lowest frequency
- F_{nn} highest frequency

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
Overview					

DCT Overview

Figure: lowest frequency to highest frequency

イロト イポト イヨト イヨト

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
Application					
DCT	and Pitpat				

- image size 256 * 256 pixels
- blocksize 8 * 8 pixels
- \Rightarrow 32 * 32 blocks
- \Rightarrow 64 DCT coefficients for a block
- \Rightarrow 65536 DCT coefficients altogether

calculate global information:

- calculate arithmetic mean over DCT matrices
- \Rightarrow 64 DCT coefficients

Introduction	Discrete Cosine Transformation (DCT) ○○○○●	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
Application					
DCT	Evnerimente				

- different blocksizes $(2^n * 2^n, n = 1, 2, ...)$
- other statistic tools (standard deviation, variance, ...)
- color spaces:
 - YUV luminance channel
 - RGB red, green, blue channel
 - RGB all channels (3 result matrices)

Introduction Discrete Cosine Transformation (DCT) Fast Fourier Transformation (FFT)

•**00**000

Pattern Classification Results Experiments

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

Discrete Fourier Transformation (DFT)

Continuous case:

•
$$\hat{f}(u) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-2\pi i u x} dx$$

•
$$f(x) = \int_{-\infty}^{\infty} \hat{f}(u) e^{2\pi i u x} du$$

Discretization:

•
$$\hat{f}(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i u x/N}$$

• $f(x) = \sum_{x=0}^{N-1} \hat{f}(u) e^{2\pi i u x/N}$

Introduction Discrete Cosine Transformation (DCT) Fast Fourier Transformation (FFT) Pattern Classification Results Experiments

Overview

Discrete Fourier Transformation (DFT)

2D case:

•
$$\hat{f}(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-2\pi i (ux/M + vy/N)}$$

• $f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} \hat{f}(u,v) e^{2\pi i (ux/M + vy/N)}$

Separability:

•
$$\hat{f}(u,v) = \frac{1}{M} \sum_{x=0}^{M-1} \left(\frac{1}{N} \sum_{y=0}^{N-1} f(x,y) e^{-2\pi i v y/N} \right) e^{-2\pi i u x/M}$$

Problem:

- High complexity $O(N^2)$
- \Rightarrow FFT

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Overview

Fast Fourier Transformation (FFT)

- $O(N \log N)$
- Cooley-Tukey (1965)
- Divide and conquer algorithm (Radix 2)
- Divide the transform into two pieces of size N/2 at each step

•
$$\hat{f}(u) = \frac{1}{N} \sum_{x=0}^{N-1} f(x) e^{-2\pi i u x/N} =$$

 $\frac{1}{N} \sum_{x=0}^{N/2-1} \left(f(2x) e^{-2\pi i u \cdot 2x/N} + f(2x+1) e^{-2\pi i u \cdot (2x+1)/N} \right)$

 Implementation: Technische Universität München, Fakultät für Informatik

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction Discrete Cosine Transformation (DCT) Fast Fourier Transformation (FFT) Pattern Classification Results Experiments

Application

Sample Images of 2D-FFT

Figure: Sample of Class I with the Fourier-Transformed

• □ > • □ > • Ξ >

-

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
		000000			

Application

Feature Generation

Topologies

Figure: Partitioning of Fourier Spectrum (a) ring filter; (b) wedge filter

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT) ○○○○○●	Pattern Classification	Results	Experiments
Application					
FFT E	Experiments				

- Variable number of rings
- Variable width of rings
- Statistic tools (mean, standard deviation, ...)
- Color spaces: YUV, RGB, ...
 - YUV: luminance channel
 - RGB red, green, blue channel
 - RGB all channels

Pattern Classification

- A wide variety of classification approaches exists.
- Statistical pattern classification has been used in this project.
- Classifier must be trained before being ready to use.
- The classifier's input is a feature vector extracted by FFT/DCT.
- Feature vectors are assigned to one of the classes provided during the training phase.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Statistical Pattern Classification

Statistical Pattern Classification

- For each class, use some probability density function.
- Assign a pattern to the class for which it yields the maximal density.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction Discrete Cosine Transformation (DCT) Fast Fourier Transformation (FFT) Pattern Classification Results Experiments

Statistical Pattern Classification

Statistical Pattern Classification (cont'd)

- Parametric approach
 - Select a statistical distribution (e.g. Gaussian).
 - Use the training set to adjust the distribution's parameters (e.g. mean, covariance matrix).
- Non-Parametric approach
 - Use the training set to estimate a class' density function.
- A parametric (Gaussian) approach has been used in this project.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Parameter Estimation - Maximum Likelihood Estimation

- Separate training set into corresponding classes.
- For every class C calculate mean μ_C and covariance matrix Σ_C.

$$\mu_C = \frac{1}{|C|} \sum_{x \in C} x$$

$$\Sigma_C = \frac{1}{|C|} \sum_{x \in C} (x - \mu_C) (x - \mu_C)^T$$

• Assume *C*'s distribution is $N(\mu_C, \Sigma_C)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
			00000000000		

Bayes Normal Classifier

- Assume that class affiliation is a Gaussian distribution.
- Properties
 - Good results for small training sets.
 - Simple and fast classifier.
- Linear decision boundaries
 - Use the whole training set to estimate a single covariance matrix.
 - This covariance matrix is used as a parameter for every class' probability density function.
- Quadratic decision boundaries
 - For every class a separate covariance matrix is generated.

Figure: Linear decision boundary

(日)

æ

Figure: Quadratic decision boundary

(日)

æ

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments		
Feature Extraction							
Featu	re Extraction						

- Large feature vectors cause severe performance penalties.
- A lot of data is irrelevant for classification.
- Larger feature vectors may degrade the classifier's performance.
 - "Peaking Phenomenon"

< ロ > < 同 > < 回 > < 回 > < 回 > <

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
			000000000000000		

Feature Extraction

Peaking Phenomenon

- Intuitively, increasing the number of features should increase the classifier's performance.
- Increasing the number of features often degrades the performance of parametric classifiers in practice.
- Parametric classifiers rely on accurate estimates of a class' mean and covariance matrix.
- Increasing the size of feature vectors decreases the quality of these estimates.
- Number of training samples per class *n* should be at least ten times the size of a feature vector *d*.

$$\frac{n}{d}$$
 > 10

- **A B A B A B**

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
			000000000000		

Feature Extraction

Feature Selection (cont'd)

- Create a subset of relevant features.
- Do not transform feature space, but use original features.
- Optimize according to Fisher's Criterion
 - Keep scatter within each class small.
 - Let scatter between different classes be high.
- For C classes, the dimensionality must not be reduced below C-1.

A (B) < (B) < (B)</p>

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
			000000000000000		

Feature Extraction

Feature Extraction (cont'd)

- Branch-and-Bound search.
- Guaranteed to find optimal solution.
- Reasonable performance for dropping just a few features.
- Bad performance for selecting very small subsets.
- Exponential blowup in worst case.

A (B) > A (B) > A (B)

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments		
			00000000000				
Performance Evaluation							

Classifier Performance

- Separate pattern set into a *training set* and a *test set*.
- Use the training set to adjust the classification algorithm's parameter.
- Use the test set to analyze the classifier's performance (i.e. get the rate of patterns that have been classified correctly).
- Leave-one-out method has been used in this project.
 - For every pattern *x* in the pattern set *P*, use {*x*} as the test set and all other patterns *P*\{*x*} as the training set.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Results - 2 classes

Channel	Blocksize	Vectorsize	Correctly classified
Y	4	10	64,9%
R	4		65,3%
G	4		64,5%
В	4		60,6%
R	4	8	67,0%
RGB	2		70,4%

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Results - 2 classes

Channel	Bands	Band widths	Correctly classified
Y	45		83,8%
Y	45 - 7		85,1%
R	40		83,4%
G	43		83,0%
В	41		84,2%
RGB	3 x 14	[1,1,1,2,2,2,8,11,	
		11,9,6,6,9,6]	95,9%

< ロ > < 回 > < 回 > < 回 > < 回 >

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments

Results - 6 classes

Channel	Bands	Band widths	Correctly classified
RGB	3 x 5		58,5%
RGB	3 x 6		60,7%
RGB	3 x 7		14,9%
RGB	3 x 6	[1,1,7,10,5,1]	68,4%
RGB	3 x 6	[1,1,5,10,9,2]	80,4%

Leonhard Brunauer, Hannes Payer, Robert Resch Pit Pattern Classification of Zoom-Endoscopic Colon Images using

< ロ > < 部 > < き > < き >

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments		
					00000		
Color Models							

Change the Color Model

already used:

- YUV
- RGB

used for experiments:

- HSV
- HLS

< ロト < 同 ト < 三 ト < 三

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
Color Models					

HSV Color Model

- H Hue $\varepsilon(0, 360)$
- S Saturation $\varepsilon(0,1)$
- V Value $\varepsilon(0, 1)$ (brightness of the color)

00000	Transformation (DCT)	000000		Results		
Color Models						

HSL Color Model

- H Hue $\epsilon(0, 360)$
- S Saturation $\varepsilon(0,1)$
- L Lightness $\varepsilon(0,1)$

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments		
					000000		
Optimization Problem							

FFT Result to optimize

- dynamic amount of bands
- dynamic amount of coefficients in a band
- optimize amount of correct classified images (maximization problem)
- \Rightarrow use a genetic algorithm

A (10) + (10) + (10)

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments
					000000

Optimization Problem

Genetic Algorithm Design

- fitness function: amount of correct classified images
- o chromosome encoding:
 - bit chromosome
 - fixed length (first bits determine amount of used bands, the following bits the amout of used coefficients in a band)
 - max 63 bands
 - max 63 coefficients in a band
 - \Rightarrow 6 bits header + 6 * 63 bits for coefficients in a band
 - \Rightarrow 384 bits altogether
- use tournament selection and 2-point crossover to evolve bit chromosome
- mutation rate: $\frac{k}{chromosomelength} k = 1, 2, 3...$

< ロ > < 同 > < 回 > < 回 > .

Introduction	Discrete Cosine Transformation (DCT)	Fast Fourier Transformation (FFT)	Pattern Classification	Results	Experiments ○○○○○●		
Optimization Problem							
Mem	ory Problem						

hold FFT coefficients in memory to speed up evolution process

- to calculate for every setting the FFT coefficients is very expensive
- hold the data in main memory is not possible lack of memory :(
- use a database to handle information too slow
- use distributed computing technology to distribute data